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Abstract
This article examines Gene × Environment (G × E) interactions in two comorbid developmental
disorders—reading disability (RD) and attention-deficit/hyperactivity disorder (ADHD)—as a
window on broader issues on G × E interactions in developmental psychology. The authors first
briefly review types of G × E interactions, methods for detecting them, and challenges researchers
confront in interpreting such interactions. They then review previous evidence for G × E interactions
in RD and ADHD, the directions of which are opposite to each other: bioecological for RD and
diathesis stress for ADHD. Given these results, the authors formulate and test predictions about G ×
E interactions that would be expected at the favorable end of each symptom dimension (e.g., above-
average reading or attention). Consistent with their prediction, the authors found initial evidence for
a resilience interaction for above-average reading: higher heritability in the presence of lower parental
education. However, they did not find a G × E interaction at the favorable end of the ADHD symptom
dimension. The authors conclude with implications for future research.
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In this article, we review current models of Gene × Environment (G × E) interaction and apply
them to two comorbid developmental disorders—reading disability (RD) and attention-deficit/
hyperactivity disorder (ADHD)—and to the favorable ends of their symptom dimensions.
These two disorders are good models in which to explore G × E interactions because they are
common developmental disorders, with estimates of 5%–10% prevalence in both cases
(American Psychiatric Association, 2000; Shaywitz, Shaywitz, Fletcher, & Escobar, 1990),
and they both have genetic and environmental components to their etiology. Current behavior
genetic analyses estimate the heritability of RD to be about 58% (Pennington & Olson, 2005)
and the heritability of ADHD to be about 76% (Faraone et al., 2005). As these estimates show,
the influence of genetics in these disorders is quite strong, but the fact that the heritability
estimates are not 100% in either disorder leaves room for environmental influences. On the
basis of this pattern, it is not too surprising that both disorders show preliminary evidence of
G × E interactions.

What is intriguing is that this evidence indicates opposite directions for these interactions: RD
is more heritable in a favorable environment (a bioecological G × E interaction, which is
explained in more detail below), and ADHD is more heritable in a risk environment (the
familiar diathesis-stress interaction found in other psychopathologies). This opposite pattern
of interactions is important to understand, and we discuss what it may mean. We also test
whether this opposite pattern occurs in our large sample of twins selected for RD and ADHD,
and then we formulate and test predictions about what direction of interaction should occur at
the favorable end of each symptom dimension.

For the purpose of extending G × E interaction models to the favorable end of the phenotypic
distribution, it is important that our model disorders, RD and ADHD, have underlying
phenotypic liabilities that can be conceptualized on a continuum. Although the disorders are
determined by an arbitrary cutoff at the low end of the continuum, there are also individuals
who fall at the favorable end of the continuum (e.g., good reading, good attention). As long as
the favorable end of the continuum is also heritable, it is reasonable to test for G × E interactions
at this end of the distribution. In the case of good reading, previous research has shown that it
is similar in heritability to RD (Boada et al., 2002). To our knowledge, similar analyses have
not been conducted regarding good attention. We therefore test first for the heritability of good
attention before proceeding with our G × E analyses.

In what follows, we first provide an introduction to G × E interactions, highlighting definitional
issues and the distinction between G × E interaction and Gene–Environment (G–E)
correlations. Then, we provide a brief general review of the two main types of G × E interactions
(diathesis stress and bioecological) and extend these two main types of G × E interaction to
the favorable extreme of the distribution. Next, we discuss general methodological issues
involved in detecting G × E interactions. We then review evidence for bioecological G × E
interactions in RD and diathesis-stress interactions in ADHD. Next, we test whether the same
pattern is found in our own data. Given that we also find opposite G × E interactions for RD
and ADHD, we predict and test what type of G × E interactions should be found at the favorable
extreme of the RD and ADHD symptom dimensions. Finally, we conclude by discussing
implications for future research.
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Introduction to G–E Interplay
G × E interaction refers to the fact that environments can modify the expression of an
individual’s genetic background, either strengthening or weakening the effect of genes on
phenotypes (Rutter, 2006). At the outset, it is important to note that this definition of G × E
interaction is quite specific and is distinct from broad notions of the interconnectedness of
genetic and environmental factors in development (Gottlieb, 2007; Plomin, DeFries,
McClearn, & McGuffin, 2008). Interest in G × E interactions has flourished in recent years.
This level of activity indicates a notable paradigm shift in the field of behavioral and psychiatric
genetics (e.g., Caspi & Moffitt, 2006; Grigorenko, 2005; Kramer, 2005; Liu, Fallin, & Kao,
2004; Moffitt, Caspi, & Rutter, 2005; Rutter, 2006; Shanahan & Hofer, 2005), although some
authors are encouraging caution in the interpretation of G × E findings (e.g., Eaves, 2006). The
statistical and methodological difficulties involved in detecting G × E interactions are discussed
further below. Throughout this article, we will use the term G × E interaction to encompass
both behavioral genetic and molecular genetic measures of G, although previous authors have
drawn a distinction between Heritability × Environment versus Gene × Environment
interactions (e.g., Rutter, Moffitt, & Caspi, 2006).

This distinction is important, as heritability can differ in two environments just because the
range of environmental (or genetic) risk or protective factors is different in each environment.
If the environmental range is restricted, then heritability will inevitably increase. If the genetic
range is restricted, then environmentality will inevitably increase. This is the case because
heritability and environmentality are defined as proportions of the total phenotypic variance
that differences in genes or environments account for, respectively. If one proportion increases,
the other must decrease, because they sum to 1.0. So, a Heritability × Environment interaction
found with behavioral genetic methods could arise when the frequencies of relevant alleles
(i.e., range of genetic differences) are identical across the range of the environmental variable
(e.g., parental education), but different levels of that environmental variable provide different
ranges of environmental risk (or protective) factors. A bioecological interaction (in which
heritability increases as the environment becomes more favorable) is usually thought of in just
this way: The range of environmental differences contributing to the outcome is narrower as
the environment becomes more favorable; thus, genetic differences account for more
phenotypic variance (i.e., higher heritability). Similarly, we could have a null Heritability ×
Environment interaction, but different alleles could be affecting the outcome in different
environments. In contrast, when we find a G × E interaction using molecular methods, we at
least know that the effect of a particular allele (i.e., gene variant) on an outcome varies as a
function of that environmental variable. But we do not know exactly what it is about the
environmental factor that modifies gene expression or how it does it. Both methods of testing
for G × E interactions are relevant for developmental science because they help us understand
differences in developmental pathways. However, the foregoing makes it clear that interpreting
G × E interactions is hardly straightforward, because they can arise for a variety of reasons,
especially in the case of Heritability × Environment interactions.

G × E interactions are most easily studied in animal models in which both the genetic
background and the environment can be manipulated experimentally. One of the best-known
studies of G × E interaction in an animal model was conducted by Cooper and Zubek (1958).
In this study, rats bred for a “maze-bright” or “maze-dull” phenotype were placed in “enriched”
or “restricted” rearing environments. Results showed that the enriched condition boosted the
performance of the maze-dull rats compared with controls, but it did not affect the performance
of the maze-bright rats. In contrast, the restricted environment impaired the performance of
the maze-bright rats compared with controls, but it did not affect the performance of the maze-
dull rats. These results demonstrated that the environment could moderate the impact of
genetics on a phenotype, in this case maze learning. Importantly, the pattern of interaction was
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quite complex. One could imagine a more simplistic outcome in which environmental risk plus
genetic risk could have resulted in multiplicatively worse outcomes. The same could have been
true at the positive end of the distribution such that an enriched environment plus favorable
genetic background could have resulted in multiplicatively better outcomes. Instead, the pattern
of interaction was more complicated, foreshadowing the complexities involved in detecting
and interpreting human G × E interactions.

Another important pattern emerges from this and other animal studies (e.g., Crabbe, Wahlsten,
& Dudek, 1999; Valdar et al., 2006). Animal studies that detect a G × E interaction typically
find it in the context of a main effect of genes and a main effect of environment. Without these
two main effects, it is quite rare to find a G × E interaction in animal models (Crabbe et al.,
1999; Valdar et al., 2006). In contrast, studies of G × E interactions in humans have not always
found main effects of genes and environment (e.g., Caspi et al., 2002, 2003), leading some
investigators to question the validity of the interaction.

As discussed earlier, there is now considerable interest in detecting G × E interactions in
humans through the use of behavioral genetic (e.g., twin studies) or molecular genetic designs
(e.g., linkage or association studies). Unfortunately, when the environment cannot be randomly
assigned, as in animal experimental studies, a potential complication arises: G–E correlations.
The term G–E correlation refers to the fact that exposure to environments is often partly
genetically determined. In fact, most of the environments that are considered in behavioral
research are at least partly determined by genetic factors (Kendler & Baker, 2007; Plomin,
1994; Plomin & Bergeman, 1991; Scarr & McCartney, 1983). For example, many family
variables, such as parenting, parent education, and socioeconomic status, have been termed
environmental even though these variables are partly under genetic influence (Plomin, 1994).
Adoption designs are superior to twin designs in dealing with the problem of G–E correlation,
because postnatal E is provided by the adoptive parents and should be uncorrelated with the
child’s G, unless there is selective placement. Hence, an adoption design allows a clearer test
of the main effects of G and E and their interaction than does a traditional twin design.

If there is a positive G–E correlation, meaning that both G and E tend to cause deviations in
the same direction from the mean, then G and E are confounded. Therefore, those with a higher
genetic risk for a particular outcome also have a higher environmental risk for that outcome,
and vice versa. For example, as discussed below, we know there is a genetic main effect on
ADHD symptoms (i.e., ADHD is moderately heritable) and that maternal smoking during
pregnancy increases the number of ADHD symptoms in offspring (i.e., an environmental main
effect). There could also be a G × E interaction between risk alleles for ADHD and nicotine
exposure in utero. But before we could clearly test for such a G × E interaction in humans, we
would need to rule out a positive G–E correlation between risk alleles for ADHD and smoking
in the mother. If there were such a positive correlation, then an apparent G × E interaction
could just be a G–E correlation.

The distinction between G–E correlations and G × E interactions is sometimes a difficult one
to understand, especially as both mechanisms are likely to be operating in development. In
quantitative genetic theory, G–E correlation and G × E interaction are defined to be independent
sources of phenotypic variance (Plomin, DeFries, & McClearn, 1990), and therefore
theoretically a G × E interaction can occur either in the presence or in the absence of G–E
correlation. Of course, practically, it is easier to detect G × E interaction in the absence of G–
E correlation (i.e., in a true experiment in which environments are randomly assigned to
genotypes). Conceptually, a G × E interaction means that there is a nonlinear combination of
genetic and environmental effects on the phenotype; in other words, the effect of a given
genotype on the phenotype depends on the environment, and vice versa. Thus, a G × E
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interaction increases phenotypic variance beyond what is attributable to the main effects of G
and E.

There are several mechanisms through which environments can be responsive to genetics,
termed passive, evocative, and active G–E correlations (Plomin, DeFries, & Loehlin, 1977;
Scarr & McCartney, 1983). We illustrate these three types of G–E correlations using the
example of a child with RD and the environments to which the child is exposed. In each case,
these positive G–E correlations create a positive feedback loop across development that leads
to a more extreme phenotype than the main effects of G and E would produce alone. Passive
G–E correlation refers to the fact that parents provide family environments that are partly
determined by their own genetic background. Thus, the child with RD may have inherited a
genetic propensity for RD from a parent, and this parent may not enjoy reading to his child
because of his own weakness in reading, leading to even poorer reading skills in the child.
Evocative G–E correlation refers to the fact that individuals evoke certain responses from
others on the basis of their genetic background. For example, the child with RD may overtly
struggle with reading, leading parents and teachers to suggest alternative activities or to focus
on other strengths of the child, thereby reducing the literacy exposure of the child. Finally,
active G–E correlation refers to the fact that individuals seek out environments consistent with
their own skills. Thus, the child with RD may avoid reading and instead seek out alternative
activities, thus creating an environment with reduced literacy activities, resulting in poorer
reading skills in the child, even despite an adequate literacy environment in the home. In all
three cases, the environments to which the child is being exposed are partly determined by the
child’s own genetic liabilities, whose effects are accentuated by the correlated environments.
There is specific evidence that these kinds of mechanisms are operational in RD (Scarborough,
Dobrich, & Hager, 1991) and language development (Gilger, Ho, Whipple, & Spitz, 2001),
and such G–E correlations are likely to play a role in many domains of development.

The three mechanisms just discussed were instances of positive G–E correlations, which would
increase phenotypic variance. Theoretically, it is also possible for there to be negative G–E
correlations (e.g., a child with RD evokes more tutoring help from parents and teachers), which
would decrease phenotypic variance. Another difference between G × E interactions and G–
E correlations is that G × E interactions only increase phenotypic variance, whereas G–E
correlations may increase or decrease it, depending on whether they are positive or negative.

Fortunately, behavioral genetic simulations have shown that G × E interactions can be detected
even in the presence of G–E correlations (Purcell, 2002). In most studies, the strategy for
dealing with G–E correlations while testing for G × E interactions has been to test for the
correlations directly. In this article, we refer to some variables as environmental, such as parent
education, although we acknowledge that most environmental variables are under some genetic
influence (Plomin & Bergeman, 1991). We refer to these variables as environmental to simplify
terminology, but we consider carefully whether our resulting G × E interactions can be
explained by G–E correlations. The importance of G–E correlation as a confound is partly
dependent on the direction of the G × E interaction that is detected, a subject that is discussed
further below in the examination of G × E models.

Types of G × E Interactions
G × E interactions are a complex topic (Grigorenko, 2005), and various forms of interaction
are just beginning to be explored (e.g., Kendler & Eaves, 1986; Rutter, 1983; Shanahan &
Hofer, 2005). The current G × E models can be distilled down to two theoretical models that
make opposite predictions about the direction of the interaction. The diathesis-stress model
predicts that a diathesis (genetic vulnerability) coupled with an environmental stress will
increase the likelihood of disordered behavior (Rende & Plomin, 1992). In other words, there
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is a synergy between genetic and environmental risk factors. In genetic terms, this model
predicts that the heritability of the disorder will be higher for individuals in risk environments
(Rutter et al., 2006). Diathesis-stress models are a cornerstone of the conceptualization of how
psychopathologies develop (O’Connor, Caspi, DeFries, & Plomin, 2003). The explanatory
power of G × E interactions in the etiology of disordered behavior has been demonstrated in
several psychopathologies, including conduct disorder (Cadoret, Yates, Troughton,
Woodworth, & Stewart, 1995; Caspi et al., 2002; Rutter et al., 2006) and depression (Caspi et
al., 2003; Eley et al., 2004; Silberg, Rutter, Neale, & Eaves, 2001). In both cases, an
environmental stress (e.g., maltreatment in conduct disorder; stressful life events, especially
loss, in depression) coupled with a genetic risk results in more disordered behavior than would
be expected by either factor alone or in additive combination.

Whenever a diathesis-stress interaction is detected, an important confound to consider is G–E
correlations. Several studies have been able to rule out a correlation between the genetic and
environmental risk factors included in the study either by using an adoption design (e.g.,
Cadoret et al., 1995) or by testing for them directly and finding that individuals with the genetic
risk allele have not been exposed to more environmental stress (Caspi et al., 2002, 2003) than
those without the risk allele. However, this direct test does not rule out the possibility that the
putative environmental risk is actually due to a separate, unmeasured genetic influence (e.g.,
harsh parenting may be genetically influenced by genes other than the risk allele). In this case,
the diathesis-stress G × E interaction may actually be a Gene × Gene interaction, because the
identified risk allele is interacting with other unidentified genetic risk factors that are correlated
with the risk environment.

In contrast to the diathesis-stress model, the bioecological model predicts that enriched
environments will enable underlying genetic differences to be actualized, whereas risk
environments will mask the genetic differences (Bronfenbrenner & Ceci, 1994; Gottesman,
1963). In genetic terms, this model predicts that the heritability of the disorder will be higher
in enriched environments (Rutter et al., 2006). Although research investigating G × E
interactions in psychopathologies has tended to find the diathesis-stress type of G × E
interaction, research investigating G × E interactions in RD and other cognitive abilities has
tended to find the bioecological form of G × E interactions (Harden, Turkheimer, & Loehlin,
2007; Kremen et al., 2005; Rowe, Jacobson, & van den Oord, 1999; Turkheimer, Haley,
Waldron, D’Onofrio, & Gottesman, 2003), with few exceptions (Asbury, Wachs, & Plomin,
2005; van den Oord & Rowe, 1998).

The logic of the bioecological interaction was discussed by Lewontin (1995) through the
analogy of genetically variable seeds that are planted in two fields, of which one is rich in
nutrients and the other is deprived. In the deprived field, all of the plants will be short because
of the environmental adversity. However, in the nutrient-filled field, there will be considerable
variability in plant height that is primarily determined by the genetic endowment of the plant.
Thus, the environment in which the seed was planted determines how the genetic potential or
liability of the plant is expressed—a bioecological G × E interaction.

In the case of bioecological G × E interactions, the potential confound of G–E correlation is
less of a problem than in diathesis-stress interactions. In the bioecological case, the interaction
is not in the direction that can be explained by a confounding of G and E risk factors, because
the genetic risk of the child is being revealed more strongly in a favorable environment. The
genetic and environmental factors are negatively correlated, in contrast to the diathesis-stress
interaction in which the genetic and environmental factors are positively correlated and hence
confounded. If the genetic and environmental factors are negatively correlated, then the
interaction cannot be explained by a simple G–E correlation. Instead, one has to derive an
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explanation for why a child’s genetic risk is more strongly expressed when exposed to more
favorable environments.

It would be a mistake to consider the diathesis-stress and bioecological models simple opposites
of each other, because the nature of the underlying process in each is different (Rutter, 2006).
In a diathesis-stress interaction found with molecular methods, we assume that both the
diathesis and the stress affect the same specific biological substrate and that the two may be
jointly necessary for the phenotype to be observed. (A diathesis-stress interaction found with
behavioral genetic methods could arise just because the risk environment provides less
variation, thereby increasing heritability relative to the nonrisk environment; thus, it would not
necessarily implicate a particular biological substrate.) In contrast, as discussed earlier, a
bioecological interaction found with either molecular or behavioral genetic methods can occur
just because a variety of environmental risk factors have been reduced in a favorable
environment, and therefore the environment will contribute less to individual differences, and
genes will contribute more. Unlike in a diathesis-stress interaction, the environmental factor
in a bioecological interaction does not necessarily act on the same biological substrate as the
genetic risk factors. Instead, it may just allow those genetic risk factors to account for more of
the variance in outcome, because environmental risk factors that affect that outcome have been
minimized. We next extend the G × E interaction models to the favorable extreme of the
distribution.

Extending G × E Interactions to the Favorable Extreme
Although existing models of G × E interaction have focused on disorders (the unfavorable
extreme of a symptom dimension), it is important to consider the role of G × E interactions in
producing good developmental outcomes (the favorable extreme of a symptom dimension).
Some interactions that occur at the favorable extreme of a symptom dimension (e.g., good
reading, good attention, and good emotion regulation) are pertinent for understanding
resilience. By resilience we mean the possibility of a child obtaining a good developmental
outcome despite having risk factors that predispose toward a poor outcome. These risk factors
could be environmental or genetic. Thus, a resilient child might become a good reader despite
growing up in a home environment that did not promote literacy, possibly because the child
has favorable gene variants for reading skill. Or a resilient child might become a good reader
despite having some risk alleles for poor reading, possibly because of a favorable literacy
environment and their own determination. We next consider the theoretical alternatives for G
× E interactions at the favorable extreme of the distribution, given what occurs at the
unfavorable extreme, and we later test whether such interactions occur for good reading and
good attention.

So what are the conceptual extensions of the diathesis-stress and bioecological models at the
favorable end of the distribution? These are illustrated in Figure 1. The key idea in the diathesis-
stress model is that to produce an extreme outcome, there must be a synergy between genetic
and environmental factors. A diathesis-stress interaction is a negative synergy in that a
considerably more negative outcome occurs when both genetic and environmental risk factors
are present. In this case, heritability of the deficit (negative outcome) in the proband group is
significantly greater in a risk environment than in a nonrisk environment (see also Figure 2B,
which illustrates this situation). So a positive synergy (lower right quadrant of Figure 1) would
involve an interaction between genetic and environmental protective factors. In this case, the
heritability of the group with the positive outcome is greater in a protective environment than
in a less favorable environment. Although we do not know of documented examples of a
positive synergy, we can imagine they occur for extremely favorable outcomes, such as
becoming a world-class performer in some field or living past 100 years. For such extreme
favorable outcomes, one may need virtually all the favorable alleles, all the favorable
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environmental factors, and the synergy or interaction between them. Because research suggests
a diathesis-stress G × E interaction for ADHD at the low end of the attention distribution, we
expect to find a positive synergy interaction at the high end. In other words, good attention will
be more heritable in a favorable environment.

What is the conceptual extension of the bioecological model at the favorable extreme of the
distribution? There is an ambiguity here. If the bioecological model predicts that risk
environments mask genetic differences at both extremes of the distribution, then the conceptual
extension of the bioecological model is redundant with the positive synergy model just
described. That is, the heritability of a good outcome would be greater in a protective
environment. However, if the key idea in the bioecological model is that genetic variations are
more important (heritability of the extreme group is higher) when the range of relevant
environmental factors is reduced, then there is a distinct conceptual extension of the
bioecological model at the favorable extreme of the distribution. Thus, if a risk environment
reduces both the level and the range of environmental factors supporting a good outcome, then
the heritability of the good outcome group in a risk environment should be higher than the
heritability of the good outcome group in a nonrisk environment. In other words, only
genetically resilient children will exhibit the good outcome in a risk environment, whereas
genetic variations favoring a good outcome will be less important in a nonrisk environment,
which will provide a higher level and more variability of environmental protective factors
predisposing toward a good outcome. We call this a resilience interaction, because genetic
protective factors that predispose toward a good outcome are unmasked in a risk environment.
Because evidence suggests that there is a bioecological interaction for RD at the low tail of the
reading distribution, we predict there will be a resilience interaction for good reading at the
high tail. That is, good reading will be more heritable in a risk environment than in a protective
one. We next describe the method used here to test for G × E interactions.

Using the DeFries–Fulker Method to Test for G × E Interactions
Because the method used to test for G × E interactions in this article is the DeFries–Fulker
(DF) model, we explain the logic of that model here. This model tests for the etiology of an
extreme group in a twin sample, and so it is a powerful approach for selected samples, such as
those used in this article (e.g., good and poor reading, good and poor attention). The method
allows one to decompose that etiology into main effects of genes (h2g), shared environment
(c2g), and nonshared environment (e2g), and to test for interactions (DeFries & Fulker, 1985,
1988). The letter g refers to group and makes it clear that these etiological components apply
to the extreme group and not to individual differences across the whole distribution.

The DF method capitalizes on the phenomenon of regression to the mean. In this method, at
least one member of each twin pair (the proband) is selected to be extreme on the phenotype,
and then the regression equation predicts the cotwin’s phenotypic score based on the coefficient
of genetic relationship between the twins, which is 1.0 for monozygotic (MZ) twin pairs and
0.5, on average, for dizygotic (DZ) twin pairs. The logic is that MZ cotwins will not regress
as far back to the population mean as DZ cotwins if the trait is heritable. The DF basic equation
is given as

where C stands for the cotwin’s score on the phenotype of interest, P stands for the proband’s
score on the phenotype of interest, and R stands for the coefficient of genetic relationship (1.0
vs. 0.5). If the beta for the coefficient of genetic relationship (B2 term) is significant, then there
is evidence that being in the proband group is heritable.
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Figure 2A illustrates the case in which there is evidence for univariate h2g because the cotwins
of DZ probands regress further back to the population mean than the cotwins of MZ probands
(differential regression to the mean). The c2g and e2g components may be significant in this
case as well.

The DF equation can also incorporate tests of G × E interaction in its extended form, where
the new term, E, stands for an environmental variable. Here the product of the environmental
variable and the coefficient of genetic relationship tests for the presence of a G × E interaction
(B5 term):

Figures 2B and 2C depict G × E interactions in a simplified form by treating the E factor as
binary. In practice, the E variable is often continuous, and the extended DF model tests for
interaction across that continuum. As Figures 2B and 2C depict, a G × E interaction in the DF
model signifies that differential regression to the mean varies as a function of E. For illustrative
purposes, we have depicted the extreme case in which h2g is zero in one environmental
condition and moderate in another, but obviously this is not required. In a diathesis-stress
interaction, there is significantly greater differential regression to the mean in the presence of
the E risk factor than in its absence (e.g., higher h2g in unfavorable environments; see Figure
2B). In a bioecological interaction, the opposite is true: greater differential regression to the
mean in the absence of the E risk factor than in its presence (e.g., higher h2g in favorable
environments; see Figure 2C). At the favorable extreme of the distribution, a positive synergy
interaction would involve greater differential regression to the mean in the presence of an E
protective factor. In contrast, a resilience interaction would involve greater differential
regression to the mean in the presence of an E risk factor.

The DF method has also been adapted for molecular genetic linkage analyses (Fulker et al.,
1991). The logic of the method remains the same, but sibling pairs instead of twin pairs are the
sample of interest. Instead of an overall coefficient of genetic relationship (i.e., 1.0 for MZ
pairs vs. 0.5 for DZ pairs), the genetic similarity between the siblings is captured by the identity-
by-descent (IBD) value of the siblings at a specific genetic locus. Siblings can share both alleles
(IBD = 1.0), half their alleles (IBD = 0.5), or none of their alleles (IBD = 0.0) for a specific
genetic locus because of the segregation patterns of parental alleles. If this genetic variance
significantly predicts the extent of regression to the mean for the cosibling, then there is
evidence for linkage. This linkage model can also incorporate additional covariates in its
extended form so that G × E interactions can be examined within a linkage framework (Fulker
et al., 1991).

In later sections, we use the three illustrations in Figure 2 to explore G × E interactions at the
unfavorable and favorable extremes of the distribution.

Complications in Testing for G × E Interactions
We have already alluded to two complications in testing for G × E interactions: G–E
correlations and interpretation of G × E in the absence of genetic and environmental main
effects. G–E correlations are an important confound to consider in diathesis-stress interactions,
but they are less problematic in bioecological interactions. Regarding main effects of genes
and environment, it is certainly statistically possible to obtain an interaction without main
effects. However, in controlled animal studies, investigators tend to find main effects of both
factors when an interaction is detected (e.g., Crabbe et al., 1999; Valdar et al., 2006). Unlike
animal studies, human studies of G × E interaction only rarely involve random assignment of
environmental risk to different genotypes. Animal studies of G × E interaction provide a gold
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standard of what we should expect to find in human studies of G × E interaction. Unless, quite
unexpectedly, G × E interactions operate differently in humans than in animals, we should be
wary of the validity of G × E interactions in humans in the absence of main effects. We continue
our discussion of complications in testing for G × E interactions by addressing the following
issues: biological versus statistical interactions, multiple testing and Type I errors, power and
Type II errors, artifactual interactions, and behavioral genetic versus molecular genetic
approaches.

The term G × E interaction carries both biological and statistical implications that are not
completely synonymous (Rutter, 2006). In this article, we focus on the statistical detection of
G × E interaction, although we acknowledge that this method captures only a subset of G × E
interactions, those that are multiplicative (Rutter, 1983, 2006). Other biological G × E
interactions may be operational in development but remain undetected with statistical methods,
especially if there is no variation in the genetic or environmental risk factors. The disorder
phenylketonuria is a good example of a G × E interaction that would be masked as a genetic
main effect in a typical environment. Phenylketonuria results from both a genetic mutation and
exposure to phenylalanine, a biological G × E interaction, but because phenylalanine is a
common ingredient in our diets, every individual is exposed to the risk environment unless an
intervention is put in place. Because of the ubiquity of the environmental risk factor, this
biological G × E interaction cannot be detected statistically (Rutter, 2006; Rutter & Pickles,
1991). The lesson from this example is that it is important to acknowledge the limitations of
the statistical approach to detecting G × E interactions when considering the full range of
possible G × E interactions.

The issue of multiple testing and Type I error is a large problem in the molecular genetics
literature that impacts the G × E literature. These issues have been discussed extensively in the
association literature, where there have been many examples of genetic associations that do
not replicate and simulations have documented the potential for false positive results (Sullivan,
2007). With uncertain genetic risk factors, it is difficult to build a case for a G × E interaction.
Rigorous replication of the genetic association is necessary to establish the association itself
and to establish which allele is the risk allele. Subsequently, G × E interactions can be tested
with the established risk allele. In these G × E analyses, issues with multiple testing often
become a problem because of the exploratory state of the literature. It is common to test several
risk alleles, several environmental factors, and several phenotypes, and it is difficult to make
predictions about the expected direction of the interaction because the preexisting literature is
sparse. Because the potential for Type I error is large in these exploratory studies, we should
rely on strict replication studies that require that the same risk alleles interact with similar
environmental risk factors in the same direction of interaction.

Not only is Type I error a problem in G × E studies, but Type II error and power are also of
concern, because interactions require more statistical power to be detected than main effects.
Within the framework of the DF method, we computed the sample size of twin pairs needed
to detect G × E interactions that account for 1%, 5%, and 10% of the variance assuming 80%
power, a 5% alpha level, and equal numbers of MZ and DZ twin pairs. These variance estimates
are reasonable given previous analyses that we have been conducting in our laboratory. Because
the DF method is regression based, power can be computed with typical power programs (e.g.,
G*Power 3; Faul, Erdfelder, Lang, & Buchner, 2007). Given these parameters, the sample sizes
needed to detect an interaction that accounts for 1%, 5%, and 10% of the variance are 779 twin
pairs, 152 twin pairs, and 73 twin pairs, respectively. Of course, the DF method is based on an
extreme group selection; thus, at least one member of each twin pair must qualify for the
extreme cutoff. Extremity cutoffs are typically at least one standard deviation below the
average, and so sampling must occur below the 16th percentile. On the basis of these sample

Pennington et al. Page 10

Dev Psychol. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



size estimates, some of the analyses presented in this article are under-powered. We include
them to illustrate the methods and provide directions for future research.

In addition to the problems of Type I and Type II errors, there is a problem of spurious G × E
interactions, which can be detected as a result of different kinds of artifacts in the data, such
as scaling artifacts, dichotomization, and selected sampling (Eaves, 2006; Rutter, 2006). These
issues were explored in a simulated data set based on an additive model (Eaves, 2006). Analyses
of the simulated data detected erroneous G × E interactions because of the scaling properties
or range of the environmental variable in the study. These artifacts are potentially replicable
across studies if the same environmental measures are included (Eaves, 2006). Scaling artifacts
may be detected by transforming the scale and investigating whether the interaction disappears.
Additionally, studies could include several environmental measures of the same construct that
have different psychometric properties and look for convergence across measures. The
simulations also showed that dichotomizing a continuous phenotype into a diagnosis, for
example, resulted in a large percentage of spurious G × E interactions, suggesting that it is best
to use continuous phenotypes as the dependent variable (Eaves, 2006). Finally, the simulations
showed that analysis of selected samples without correction for ascertainment resulted in
spurious G × E interactions (Eaves, 2006). In the following analyses, we focus on samples
selected for good or poor reading or attention. Although these samples are selected, we are not
analyzing them as if they were random. Instead, we are using the DF analysis, which takes
advantage of the selected nature of the sample. Thus, we do not believe our analyses are
susceptible to spurious G × E interactions on the basis of selection.

One final issue in the detection of G × E interaction is the relative costs and benefits of
behavioral genetic versus molecular genetic approaches. One weakness in the behavioral
genetic approach to G × E interactions is that it tests for interactions with genetic influences
that are inferred rather than directly measured, but the mechanisms underlying the interaction
are likely to involve a specific gene or subset of genes rather than all the genes that influence
a phenotype. As such, some authors argue that molecular genetic methods are preferable for
testing G × E interactions (Rutter et al., 2006). Ideally, tests of G × E interaction would involve
specific risk alleles (e.g., Caspi et al., 2002, 2003), but in the case of many developmental
disorders, these have not yet been determined. In contrast, when taking a molecular genetic
approach, the effect size of single-risk alleles may be small, even where there is a G × E
interaction, and therefore such effects may be hard to detect without very large sample sizes.

So we are faced with a methodological dilemma. Behavioral genetic tests of G × E interaction
are potentially more powerful and will detect main effects of G, but they leave the underlying
biological mechanisms unknown and may even mask real G × E interactions involving specific
genes. Conversely, G × E interaction studies using single-candidate genes may have only small
effect sizes and not reach significance.

One compromise strategy would be to examine simultaneously several candidate genes that
affect the same biological pathway (e.g., dopaminergic transmission in the case of ADHD or
neuronal migration in the case of RD), and perhaps several relevant environmental factors as
well. In the case of RD, there is evidence that at least some of the candidate genes interact in
development (Harold et al., 2006), and so examining their joint effects is biologically plausible.
To implement this strategy, one must already have convincing data on which alleles are the
risk variants. Then one could compute composite G and E risk scores across candidate genes
and risk environments for each subject and test next for G and E main effects and G × E
interactions in one omnibus analysis. If there are significant main effects or an interaction,
follow-up analyses with an appropriate correction could be performed to specify which risk
alleles and which risk environments are contributing to the overall effect. We next review what
is already known about G × E interactions in RD (and related phenotypes) and ADHD.
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Review of G × E Interactions in RD and Related Phenotypes
Previous studies have demonstrated that reading performance and its component processes are
highly heritable (Gayan & Olson, 2001) and that environmental factors such as parental
education are predictors of child educational outcomes (Walker, Greenwood, Hart, & Carta,
1994). Nevertheless, despite this evidence for genetic and environmental influences on literacy
development, G × E interactions have been relatively neglected in reading research. One study
of a sample of middle-aged twins found that parent education moderated the heritability of
word recognition skills. Results showed that the heritability of word recognition in twins with
highly educated parents was higher (h2 = .69) than the heritability in twins with less educated
parents (h2 = .21), consistent with the bioecological model of G × E interaction (Kremen et al.,
2005).

Similar results were obtained in our Colorado Learning Disabilities Research Center (CLDRC)
twin sample. It is important to note that the CLDRC sample is overselected for history of
reading problems and that controls are selected for a negative history of reading problems
(DeFries et al., 1997). The sample was designed to examine poor reading but was not enriched
for probands with good reading (or good attention). Twin pairs are assigned to either a positive
school history group if one or both twins have a history of reading problems (Group 1) or a
negative school history group if neither twin has a history of reading problems (Group 2); these
group assignments are then used in the standardization of measures.

Friend, DeFries, and Olson (in press) investigated whether parental education moderated
heritability of group deficits in a weighted composite measure of word recognition, spelling,
and reading comprehension. Composite scores were standardized against the Group 2 mean
for both groups prior to selection of probands. Probands were selected if they scored at least
−1.5 SD below the mean on the composite and had a positive history of reading problems. This
yielded a sample of probands from Group 1 only. The results from the extended DF regression
analysis of twin scores demonstrated that the heritability of word recognition deficits increased
significantly with increasing levels of parental education, t(545) = 3.23, p = .001, B = 0.215,
which is consistent with the bioecological model of G × E interaction. In other words, if the
environment is enriched for literacy development, as we assume it is among better educated
parents, deficits in reading are more likely to be driven by genotype.

We also investigated possible G × E interactions in a sample of children with speech sound
disorder (SSD) who are at risk for developing RD (Gallagher, Frith, & Snowling, 2000;
Pennington & Lefly, 2001; Raitano, Pennington, Tunick, Boada, & Shriberg, 2004). SSD is a
developmental disorder characterized by delays in the production of intelligible speech
(Shriberg, 2003). In contrast to the previous studies described that used behavioral genetic
methods to test for G × E, this study consisted of sibling pairs and used molecular genetic
linkage methods, including an extension of the DF method to sibling pair data (Fulker et al.,
1991).

Given the comorbidity of SSD and RD, it is not too surprising that SSD has shown linkage to
several of the replicated RD linkage peaks (Smith, Pennington, Boada, & Shriberg, 2005; Stein
et al., 2004). We tested for G × E at the two SSD–RD linkage peaks with the strongest evidence
of linkage to speech phenotypes, 6p22 and 15q21, using continuous measures of the home
language–literacy environment. We tested the interactions using composite speech, language,
and preliteracy phenotypes. The results showed four significant and trend-level G × E
interactions at both the 6p22 and the 15q21 locations across several phenotypes and home
environmental measures. All of the interactions with the home environment were consistent
with the bioecological model of G × E (McGrath et al., 2007). At this point, these results are
preliminary because of the small sample size and exploratory nature of the analyses. Although
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these linkage-based methods are a step away from the ideal of using identified risk alleles to
test for G × E (e.g., Caspi et al., 2002, 2003), until risk alleles are identified for SSD and RD,
these linkage-based methods can be used as a first approximation. For instance, they could be
used to develop hypotheses about which combinations of genes and environments are likely
to show bioecological or diathesis-stress G × E interactions in different disorders. These
hypotheses could be tested more rigorously once the risk alleles for SSD and RD are identified.

When phenotypes beyond speech and literacy are considered, such as other academic and
cognitive traits, the results of G × E analyses with measures of the home environment tend to
be consistent with the bioecological model (Harden et al., 2007; Rowe et al., 1999; Turkheimer
et al., 2003), although there are exceptions (Asbury et al., 2005; van den Oord & Rowe,
1998). A highly influential study of IQ by Turkheimer et al. (2003) found evidence for a
bioecological interaction in a sample of twins from diverse socioeconomic backgrounds,
including families living near or below the poverty level. Consistent with the bioecological
model, results showed that the heritability of IQ in the lower socioeconomic status (SES)
sample was near zero (h2 = .10), whereas the heritability in the higher SES sample was much
larger (h2 = .72). One caveat to these results is that the sample of twins included a high
proportion of children from different ethnic groups. If there were mean differences in IQ
between the groups and the ethnic group proportions varied as a function of SES, then the
results would be partly attributable to their sample characteristics. It is interesting to note that
a recent study partly replicated the results in a more socioeconomically advantaged sample,
although the evidence for G × E was less marked (Harden et al., 2007).

Review of G × E Interactions in ADHD
In contrast to RD, there is evidence for diathesis-stress interactions in ADHD. Studies
examining G × E in ADHD have generally used a candidate gene approach, in contrast to the
behavioral genetic and linkage approaches that have been used in RD and related phenotypes.
Notably, most of the earlier literature on environmental influences in ADHD has focused on
bioenvironmental risk factors, whereas psychosocial environmental risk factors have been most
prominent in RD studies. However, the research is beginning to expand, as illustrated by recent
studies in ADHD showing diathesis-stress interactions with psychosocial environmental risk
factors such as SES and psychosocial adversity (Lasky-Su et al., 2007; Laucht et al., 2007;
Retz et al., 2008; Waldman, 2007). We first discuss the studies using bioenvironmental risk
factors and then turn to the study of psychosocial environments in ADHD.

Kahn, Khoury, Nichols, and Lanphear (2003) examined the role of the 10-repeat DAT1 risk
allele (DAT1 480bp) and maternal smoking on the manifestation of inattentive, hyperactive-
impulsive, and oppositional behaviors. The authors found no main effect of DAT1; however,
there was a main effect of smoking on the latter two scales (p < .05) and an interaction between
prenatal smoke exposure and DAT1 +/+ on the hyperactive-impulsive and oppositional, but
not the inattentive, scales (p < .01).

Neuman et al. (2007) examined potential interactions between DAT1 and DRD4
polymorphisms and prenatal smoking exposure or prenatal alcohol exposure in the
manifestation of ADHD subtypes as defined by the Diagnostic and Statistical Manual of
Mental Disorders (4th ed.; DSM-IV; American Psychiatric Association, 1994) or population-
defined ADHD subtypes. The study demonstrated a main effect of maternal smoking (p = .
006), but not prenatal alcohol exposure (p = .34), on DSM-IV ADHD symptoms and showed
that children who were exposed to prenatal smoking demonstrated significantly elevated odds
ratios (ORs) for developing DSM-IV ADHD-C if they had inherited the DAT1 9-repeat risk
allele, rather than the 10-repeat allele supported by Kahn et al., 2003 (DAT1 440bp; OR = 2.93,

Pennington et al. Page 13

Dev Psychol. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



95% confidence interval [CI] = 1.2–7.1) or the DRD4 7-repeat allele (DRD4*7R; OR = 2.83,
95% CI = 1.1–7.4).

Brookes et al. (2006) introduced a novel genetic association with ADHD by examining main
effects and possible interactions between a common DAT1 haplotype (a combination of the 3′
UTR 40-bp VNTR and an intron 8 30-bp VNTR) and maternal smoking or prenatal alcohol
exposure. Family-based association tests demonstrated a main effect of genotype on ADHD
symptomatology (p = .003), and the ORs for transmission of the risk haplotype to offspring
differed significantly across alcohol exposure groups (p = .04).

A study conducted in Germany by Seeger, Schloss, Schmidt, Ruter-Jungfleisch, and Henn
(2004) examined the interaction between the DRD4 7-repeat risk allele and season of birth on
co-morbid hyperkinetic disorder (HD; ICD-10 equivalent of ADHD) and conduct disorder
(CD). Chi-square analyses demonstrated no main effect for either the risk allele or season of
birth, but researchers demonstrated significant ORs for comorbid HD + CD in children with
one copy of the DRD4 7-repeat risk allele born in spring and summer (OR = 2.8, p = .013) and
autumn and winter (OR = −5.4, p = .002). An increase in relative risk in one environment
(spring and summer) juxtaposed with a decrease in relative risk in another environment
(autumn and winter) is suggestive of a crossover interaction between season of birth and DRD4.

Laucht et al. (2007) examined the interaction between the dopamine transporter (DAT1) and
psychosocial adversity factors measured by the Rutter Family Adversity Index (Rutter &
Quinton, 1977), which assesses 11 adverse family factors, such as low parental education,
marital discord, unwanted pregnancy, and poor social support of parents. Results showed no
genetic main effect of the 5 DAT1 variants on ADHD symptoms, although there was a
significant main effect of psychosocial adversity on inattention and hyperactivity–impulsivity
(p = .012–.003). There was also a G × E interaction such that individuals who were homozygous
for the DAT1 risk allele (10R allele of the 40-bp VNTR) and exposed to higher psychosocial
adversity had higher rates of inattention and hyperactivity–impulsivity (p = .001–.015). In other
words, there was only a DAT1 effect in those individuals exposed to psychosocial adversity.

Retz et al. (2008) investigated the G × E interaction between adverse childhood environments
(e.g., financial status of the family, quality of school education, degree of family conflict) and
5-HTTLPR, a serotonin promoter transporter gene polymorphism, on childhood and lifetime
persistent ADHD. Results demonstrated associations between the homozygous long (LL) 5-
HTTLPR genotype on childhood ADHD and between psychosocial childhood adversity and
ADHD. Further, a significant G × E interaction was observed between the gene variants of 5-
HTTLPR and negative childhood environments, such that the odds of meeting diagnostic
criteria for childhood ADHD increased significantly in individuals who carried at least one
small 5-HTTLPR allele (SL or SS genotype) and who were exposed to high levels of childhood
psychosocial environmental risk, compared with individuals with the LL genotype (OR = .3,
p = .044) in similar adverse environments. However, null findings were produced when testing
for this G × E interaction on persistent ADHD.

Lasky-Su et al. (2007) tested for G × E interactions involving single-nucleotide polymorphisms
(SNPs) in or around brain-derived neurotrophic factor (BDNF) and SES level on ADHD
inattentive symptom count. Correlational analyses revealed significant associations between
lower SES levels and increased ADHD symptomatology (r = .10, p = .006 for ADHD diagnosis,
and r = .16, p = .0003, for total number of ADHD symptoms). After the authors employed false
discovery rate methods to account for multiple comparisons, three BDNF SNPs (rs1013442,
rs1387144, and Vall66Met) showed significant main effects on ADHD inattentive symptom
count. Family-based association test interaction analyses demonstrated diathesis-stress-type G
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× E interactions, such that carrying BDNF SNP rs1013442, rs1387144, or Vall66Met
significantly increased inattentive symptom counts in lower SES environments.

Waldman (2007) explored the relationship between the dopamine receptor gene, DRD2, and
maternal marital stability on child ADHD diagnostic status. Generalized linear modeling
analyses demonstrated main effects of maternal marital stability (marital status: OR = 2.36,
R2 = .04; number of marriages: OR = 1.77, R2 = .04) on child ADHD, such that decreased
marital stability was associated with increased ADHD diagnoses. Results also demonstrated
significant main effects of child and mother DRD2 genotype status on maternal marital stability
(OR = 3.26, R2 = .03, for mother genotype, and OR = 1.04, R2 = .01, for child genotype) and
for mother DRD2 genotype on child ADHD diagnosis (OR = 2.50, R2 = .04). Although a main
effect was not observed for child DRD2 genotype on ADHD diagnostic status (OR = 1.26,
R2 = .005), after the author controlled for covariates such as main and interactive effects of
(child) genotype, results demonstrated a significant interaction between child genotype and
maternal marital status on ADHD, showing an increased likelihood of ADHD diagnoses for
children homozygous for the risk DRD2 alleles in less stable maternal marital environments
(p = .002, R2 = .06).

Although these studies have provided some evidence in support of molecular G × E diathesis-
stress interactions in the manifestation of ADHD, there continue to be substantial
inconsistencies in the literature regarding even the most well associated genetic and
environmental risk factors. For example, Langley et al. (2008) tested for G × E interactions
influencing ADHD diagnosis among multiple gene variants associated with ADHD in the
literature (DRD4, DAT1, DRD5, and 5-HT) and prenatal smoke exposure, prenatal alcohol
exposure, and birth weight. Conditional logistic regression analyses produced null findings for
all G × E interaction tests for ADHD diagnosis. Subsequent analyses focused on G × E
interactions modifying antisocial symptoms related to oppositional defiant disorder and
conduct disorder in children diagnosed with ADHD. Despite the null interaction findings
related to ADHD diagnosis, linear regression analyses showed evidence of G × E interactions
involving DRD5 and birth weight (p = .0004) and DRD5 and maternal smoking during
pregnancy (p = .002) on antisocial behavioral symptoms related to oppositional defiant
disorder. Analyses also demonstrated a significant modifying G × E interaction between DAT1
and birth weight on antisocial symptoms related to conduct disorder (p = .03). However, once
covariates such as full-scale IQ, gender, and total number of ADHD symptoms were included
in these analyses, none of the modifying G × E interactions remained significant.

Furthermore, many of the studies investigating ADHD G × E interactions have notable
limitations, among them a narrow scope in the investigation of risk alleles and environmental
risk factors. Although all studies claimed a theoretical basis for the selection of their risk alleles
or environments (i.e., researchers specified their variables a priori), many of the studies did
not correct for multiple comparisons, and there were some failed attempts at specific
replications across these studies. Although a lack of replication does not necessarily invalidate
initial association findings (Gorroochurn, Hodge, Heiman, Durner, & Greenberg, 2007), it
underscores a need for further research in this area.

In view of the mixed results that have been obtained with the candidate gene approach, we
attempted to replicate the diathesis-stress G × E interactions in ADHD using behavioral genetic
analyses in our CLDRC twin sample. In addition to the recruitment for children with reading
disabilities that was described earlier for the CLDRC sample, there is a separate recruitment
for children with attention difficulties. Selecting probands who met diagnostic criteria for
DSM-IV ADHD—combined type or inattentive (I) type—we employed the extended DF model
to investigate G × E interaction analyses between the ADHD inattentive symptom dimension
and parental education. Rather than count symptoms, we asked parents and teachers to rate
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each symptom from 0 to 3, and these ratings were summed to yield an inattention score that
was normally distributed. This inattention score was standardized against Group 2 (controls),
and Z scores were reflected so that a lower Z score meant more inattention. First, preliminary
analyses demonstrated that the low end of the ADHD inattentive symptom dimension was
heritable in our sample, (188) t= 5.380, p < .001, B = 0.863. Next, bivariate correlation analyses
were used to evaluate the association between parental education and child inattentive
symptomatology in the current sample. Because significant results were found in the expected
direction (r = .235, p < .001), whereby lower parental education was associated with worse
child inattention, partial correlations were applied to further test this main effect while we
controlled for parent retrospective reports of ADHD (I) symptomatology. A significant main
effect of parental education on ADHD (I) remained even after controlling for parental ADHD
(I) symptomatology (r = .285, p < .001). To address potential confounds related to G–E
correlations in our G × E interaction analyses, we employed linear regression methods to
residualize child inattention scores from the parental education environment. G × E results
from the extended DF model demonstrated a significant interaction with ADHD (I) and parental
education in the diathesis-stress direction, indicating that ADHD was more heritable in the
unfavorable parental education environment, (176) t= −2.045, p = .027, B = −0.344. In sum,
using behavioral genetics instead of molecular genetics methods, we replicated a diathesis-
stress interaction for ADHD and parental education, a psychosocial factor (Laucht et al.,
2007; Retz et al., 2008; Waldman, 2007).

Are There G × E Interactions at the Favorable Extreme of the Reading and
Attention Distributions?

Given what is already known about G × E interactions for RD and ADHD, what would we
predict will occur at the favorable extreme of these two symptom dimensions? Using the
possibilities in Figure 1, we predict a resilience interaction will occur at the favorable extreme
of the reading dimension and that a positive synergy interaction will occur at the favorable
extreme of the attention dimension.

Friend, DeFries, Pennington, and Olson (2008) investigated whether parental education
moderates heritability at the high end of word recognition ability in the CLDRC twin sample.
Word recognition scores were restandardized against a norming population mean of 100 and
a standard deviation of 15 prior to selection of probands. Probands were then selected if they
scored above this population mean on word recognition and had no history of reading problems
in school. Although probands were above-average readers, they were not selected to be good
readers (e.g., more than one standard deviation above the population mean), because more
extreme selection led to a much smaller sample size. The results demonstrated that the
heritability of above-average word recognition performance decreased significantly with
increasing levels of parental education, (1013) t= −1.75, one-tailed p = .04, B = −0.173. This
suggests that genotype plays a larger role in obtaining a good reading outcome when the
environment provides less support for that outcome. In other words, we found evidence for the
predicted resilience interaction. Now we turn to G × E interactions at the favorable extreme of
the attention dimension.

A preliminary study investigating potential G × E interactions at the high end of the attention
distribution (i.e., with a sample of children demonstrating good attention and focus) was
conducted within the same CLDRC twin sample. This sample included pairs for whom at least
one twin exhibited difficulties in reading or attention and control subjects exhibited no such
difficulties. Parents and teachers of recruited participants were asked to complete measures of
classroom performance and attention. ADHD inattention symptom dimension ratings of twins
were averaged across parents and teachers, yielding a normally distributed score. As in the
analyses of word recognition ability and parental education, ADHD inattention mean severity
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ratings were age regressed and standardized against the Group 1 mean for both Group 1 and
Group 2 twin pairs prior to the selection of probands. Probands were then selected if they scored
at least +1 SD above the Group 1 mean on ADHD (I) symptomatology ratings (+1 SD implies
less inattention). This cutoff corresponded to a mean inattention rating of 0.521 (SD = 0.497),
which is approaching the ceiling of this inattention score.

Before conducting G × E analyses, we first examined whether the above-average scores in this
proband group scores were heritable. DF regression analyses (DeFries & Fulker, 1985, 1988)
demonstrated robust univariate group heritability at this end of the distribution, (138) t= 5.043,
p < .001, B = 0.990. We also found a significant correlation between parental education and
inattention scores (r = .110, p = .038) in the expected direction, which indicated that higher
levels of parental education were associated with less inattention. Partial correlations were then
used to address potential confounds related to G–E correlations. A main effect of parental
education on child attention remained significant when controlling for father retrospective
attention ratings (r = .226, p = .033), but this association became insignificant when either
mother retrospective attention was partialed out (r = .135, p = .114) or the average of both
parents’ retrospective attention self-report of attention was controlled (r = .115, p = .189).

An extended DF model was then applied to these high-end probands to test the positive synergy
interaction predicted earlier, in which the heritability of less inattention would increase as the
favorability of the environment (i.e., parent education) increased. As in our low-end G × E
interaction analyses focusing on a group with high inattention, linear regression methods were
used to residualize twin inattention scores from parental education to address the potential G–
E correlation confounds owing to nonrandom assignment of twins to environments. Contrary
to our positive synergy prediction, results from the extended DF regression model produced
null findings for a G × E interaction for low inattention and parental education, (134) t= .997,
p = .321, B = 0.203.

In sum, although we found that both extremes of the inattention dimension are highly heritable
and associated with parental education, we did not find the positive synergy interaction we had
predicted at the favorable end of the inattention distribution. These results, however, may be
due to a threshold effect, whereby once a certain level of low inattention is achieved, an even
better score is not functionally meaningful. Nevertheless, we did replicate with behavioral
genetic methods the diathesis-stress G × E interaction for ADHD (I) found by previous
researchers using molecular genetic methods (Laucht et al., 2007; Retz et al., 2008; Waldman,
2007), with results suggesting that similar biological mechanisms are operating across
methods.

Discussion
In this article, we provided a conceptual framework that encompasses G × E interactions across
the phenotypic distribution. Theoretical models of G × E interaction have been derived from
studies focused on the low end of the phenotypic distribution, and so it is important to extend
these models to the high end of the distribution. The etiology of individuals at the high end of
the distribution can also teach us about resilience and protective factors that may be important
in developmental disorders.

Our discussion focused on two developmental disorders, RD and ADHD. At the low end of
the distribution, there is accumulating evidence for bioecological interactions in RD and
diathesis-stress interactions in ADHD. At this point, although it is difficult to discern what
factors are driving the type of interaction in each disorder because of the inconsistencies in the
literature, it seems more likely that the disorder itself and not the environmental risk factors is
actually driving these interactions. For example, although studies of G × E interactions in RD
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have focused more on psychosocial environmental factors, whereas studies of G × E
interactions in ADHD have focused more on bioenvironmental factors, recent evidence,
including our replication of a diathesis-stress-type interaction with ADHD (I) and a
psychosocial environmental factor (parental education), suggests that it is the disorder rather
than the environmental variable that determines the direction of the G × E interaction. To tease
apart the role of the disorder versus the environmental variable in determining the direction of
an interaction, future studies should examine both bioenvironmental and psychosocial risk
factors in RD and ADHD to determine whether interactions take a different form depending
on the environmental variable and use molecular rather than behavioral genetic methods.
Moreover, even though parental education has a single measure, it is not a unitary construct
but rather the outcome of a multifactorial developmental process and thus has many
environmental (and genetic) correlates. So, it is possible that the opposite G × E interactions
found for RD and ADHD with parental education may arise because different correlates of
parental education are important for each disorder. For instance, family and marital discord
may be a more important environmental risk factor for ADHD, whereas family support for
language and literacy development may be more important for RD. Just as we have to “unpack”
measures of G, we have to unpack measures of E. Additionally, future studies should examine
G × E interactions in different developmental disorders to see whether a pattern emerges.
Currently, there is a preliminary pattern in which academic and cognitive traits tend to show
bioecological interactions and psychopathologies tend to show diathesis-stress interactions.

On the basis of our review of the G × E literature in RD and ADHD, we made predictions
regarding the nature of the interactions that could be expected at the high end of the
distributions. We predicted resilience interactions for good reading and positive synergy
interactions for good attention. We presented new analyses from our CLDRC twin sample that
partly supported these predictions. We found evidence for a resilience interaction with parent
education at the above-average end of the reading distribution. Although we found null results
for a G × E interaction with parental education at the favorable end of the inattention
distribution, it is likely that our measure of “good” attention indicated only an absence of
attention problems, because it was based on ratings of inattention, not on ratings of good
attention. A second limitation of the high-end analyses presented here is that to have an
adequate sample size, we had to use cutoffs for proband selection that were not that high.
Clearly, more research is needed with larger samples at the high end of the distribution for
reading, attention, and other cognitive and socioemotional skills. The conceptual framework
that we have advanced in this article may be a useful guide for this research.
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Figure 1.
Extending Gene × Environment interactions to the favorable extreme of the distribution.
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Figure 2.
Testing of main effect of gene (G) and Gene × Environment interactions with the DeFries–
Fulker method. In Figures 2B and 2C, MZ−, MZ+, DZ−, and DZ+ refer to cotwin means in
different environmental circumstances. Minus sign signifies an unfavorable environment; plus
sign signifies a favorable environment.
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