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Many species, including humans, display group behavior. Thus, perceiving crowds may be important for
social interaction and survival. Here, we provide the first evidence that humans use ensemble-coding
mechanisms to perceive the behavior of a crowd of people with surprisingly high sensitivity. Observers
estimated the headings of briefly presented crowds of point-light walkers that differed in the number and
headings of their members (i.e., people in differently sized crowds had identical or increasingly variable
directions of walking). We found that observers rapidly pooled information from multiple walkers to
estimate the heading of a crowd. This ensemble code was precise; observer’s perceived the behavior of
a crowd better than the behavior of an individual. We also showed that this pooling provided tolerance
against crowd variability and may cause a chaotic group to cohere into a unified Gestalt. Sensitive perception
of a crowd’s behavior required integration of human form and motion, suggesting that the ensemble code was
generated in high-level visual areas. Overall, these mechanisms may reflect the prevalence of crowd behavior
in nature and a social benefit for perceiving crowds as unified entities.
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Coordinated group behavior is common for many species
(Sumpter, 2006) and important for survival (Bode, Faria, Franks,
Krause, & Wood, 2010). Perceiving crowd behaviors may be
important too. For example, some types of emergent social infor-
mation, such as panic, are uniquely conveyed by crowd behavior
(Helbing, Farkas, & Vicsek, 2000). Because the environment
changes rapidly and the visual encoding of an individual’s behav-
ior can sometimes take a relatively long time (Cavanagh, Labi-
anca, & Thornton, 2001; Neri, Morrone, & Burr, 1998; Thornton,
Pinto, & Shiffrar, 1998) and effort (Thornton, Rensink, & Shiffrar,
2002), determining a crowd’s movement by serially processing
each individual would be of little value. Indeed, humans are
capable of rapidly and automatically processing coarse differences
in the movements of multiple people (Thornton & Vuong, 2004).
This suggests that humans may use a specialized ensemble coding
mechanism that pools the movements of individuals into a precise
summary representation in order to rapidly perceive the movement
of a crowd.

Ensemble coding has been characterized as an efficient
mechanism for perceiving the “gist” of complex environments
(e.g., Alvarez, 2011; Haberman & Whitney, 2009), and it is
particularly striking when one considers the extensive visual
attention literature showing that visual processing becomes
slower and less accurate when multiple objects are viewed at
once (e.g., Franconeri, in press). Ensemble coding is wide-
spread in visual processing—it has been demonstrated for the
perception of orientation (Parkes, Lund, Angelucci, Solomon,
& Morgan, 2001), location (Alvarez & Oliva, 2008), size (Ari-
ely, 2001; Chong & Treisman, 2003; Im & Chong, 2009; Joo,
Shin, Chong, & Blake, 2009), and facial expression (Haberman,
Harp, & Whitney, 2009; Haberman & Whitney, 2007, 2009)
and motion direction (Atchley & Andersen, 1995; Williams &
Sekuler, 1984), and speed (Watamaniuk & Duchon, 1992;
Watamaniuk, Sekuler, & Williams, 1989). Efficient gist per-
ception would be especially helpful for perceiving biological
motion, which is both socially meaningful (de Gelder, 2006)
and visually complex, with specialized neural mechanisms in-
corporating form and motion (e.g., Giese & Poggio, 2003;
Grossman, Battelli, & Pascual–Leone, 2005; Grossman &
Blake, 2001; Oram & Perrett, 1994; Vaina, Lemay, Bienfang,
Choi, & Nakayama, 1990). These mechanisms are likely intact
at birth (Simion, Regolin, & Bulf, 2008) and are quick to
develop (Bertenthal, 1993; Blake, Turner, Smoski, Pozdol, &
Stone, 2003). Furthermore, abnormalities in these mechanisms
(Waiter et al., 2004) may be related to impairments in social
function that accompany autism (Blake et al., 2003; Hubert et
al., 2007). Determining if humans use ensemble coding for
perceiving the behavior of crowds would be a critical step
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toward understanding fundamental mechanisms involved in
normal and atypical social– behavioral development.

Our primary goal was to determine if humans use an ensem-
ble code to perceive the average heading (i.e., the direction of
walking) of a crowd of people. We directly tested this in the
first experiment by restricting the number of walkers that ob-
servers could use to estimate the heading of a large crowd of
people heading in different directions. We also determined
whether an ensemble code was formed rapidly, and we charac-
terized the sensitivity of the ensemble code by determining if
perception of a crowd could be better than perception of an
individual.

Our second goal was to determine if, by pooling information
across multiple features, ensemble coding could cause a heter-
ogeneous crowd of people to appear homogeneous. This is
known to occur for perception of low-level visual features
(Dakin, 2001; Dakin, Bex, Cass, & Watt, 2009; Dakin, Mare-
schal, & Bex, 2005; Morgan, Chubb, & Solomon, 2008; Ross &
Burr, 2008; Watamaniuk & Sekuler, 1992). We directly tested
this hypothesis by using a technique reminiscent of an equiva-
lent noise analysis (e.g., Dakin et al., 2009; Morgan et al., 2008;
Ross & Burr, 2008) to measure variability in perceived heading
as a function of the actual heading variability within the crowd.
This “crowd variability” analysis also provided an alternative
demonstration of the remarkable sensitivity with which ensem-
ble information about crowds is perceived, and it allowed us to
estimate the number of individuals integrated into the ensemble
code.

Experiment 1A:
Ensemble Coding of a Crowd’s Heading

Observers estimated the average headings of crowds of point-
light walkers (see Figure 1; e.g., Johansson, 1973). Each crowd of
12 walkers had an average heading (ranging from leftward to
rightward) and a controlled amount of heading variability (i.e.,
walkers within a crowd had different headings). Only subsets of 2,
6, or 10 walkers were visible from the full crowd (see Methods
section, below), and observers used these smaller subsets of visible
walkers to make heading estimates. We hypothesized that if ob-
servers use an ensemble code that integrates information from
multiple walkers, heading estimates should approach the true av-
erage of the full crowd when more walkers from the full crowd are
visible in the subset. Alternatively, if observers based estimates on
a single walker’s heading and not on an ensemble code, heading
estimates should not change (and should remain poor) even when
more walkers from the full crowd are visible in the subset.

Methods

Observers. Five experienced psychophysical observers (two
naı̈ve) gave informed consent to participate. All had normal or
corrected-to-normal visual acuity and were tested individually in a
dimly lit room.

Stimuli. Point-light walkers were composed of configura-
tions of 12 white dots (each dot: 0.11° � 0.11°, 149.5 cd/m2)
presented against a black background (0.36 cd/m2). The dots were
placed at the locations of the major joints and the head such that

Figure 1. Conditions and results from Experiment 1. (a and b) A heterogeneous crowd of walking people was
generated by sampling 12 individual headings from a Gaussian distribution centered at one of 43 headings. The
white and gray bars along the x-axes indicate the range of possible crowd headings and individual headings,
respectively. Only a subset of (a) 2, 6 (not shown), or (b) 10 walkers from the full crowd of 12 was visible for
estimating the full crowd’s heading. (c) Response variability as a function of subset size with 1000-ms (closed
circles, solid line) and 200-ms (open circles, dashed line) presentations. (d) Response variability when a full
crowd of 12 was presented, or a single walker was presented at the crowd heading; walkers were either upright
and coherent (closed circles), inverted (open inverted triangles), static (open triangles), or scrambled (open
squares), with 200-ms presentations. Unlike the inverted, static, and scrambled conditions, the crowd of upright
walkers was perceived more precisely than an individual walker heading in the same direction, suggesting that
the ensemble coding of biological motion is uniquely strong and special. Error bars represent � 1 bootstrapped
SD. � p � .05.
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the overall configuration would be perceived as a human body
(Johansson, 1973). We generated “videos” from sets of 21 static
frames in which the local position of each dot changed from
frame-to-frame in a manner which was consistent with a natural
human gait (see Vanrie & Verfaillie, 2004 for a complete descrip-
tion of these stimuli). Each gait cycle (i.e., one step by each foot)
lasted 800 ms. The application to generate the videos was written
in C# and interfaced with OpenGL via the Open Toolkit Library
(http://www.opentk.com). We generated 43 videos, each with a
distinct heading, by rotating the 3D positions of the dots in each
frame by a distinct angle around the vertical axis (i.e., the direction
of walking). The headings ranged from leftward (�90°) to right-
ward (90°) in 3° increments (see Figure 1). The 3° increment
between headings was less than the average just noticeable differ-
ence (5.778°, determined from a pilot experiment in which ob-
servers estimated the heading of a single walker presented for
1,000 ms). We limited the range to forward headings because
backward headings can appear ambiguous (perceived as forward
or backward; Vanrie, Dekeyser, & Verfaillie, 2004). A dot con-
figuration with a completely leftward (�90°) or completely right-
ward (90°) heading subtended 1.9° � 2.91° of visual angle at the
full extension of the gait cycle and 0.56° � 3.06° at the minimum
extension of the gait cycle. A dot configuration with a completely
forward heading (0°) subtended 1.03° � 3.06° of visual angle. Our
displays did not include any depth cues; the size and surface
illumination of each dot remained uniform, and overlapping dots
did not provide occlusion cues. Consequently, our displays con-
veyed heading cues in the simplest way possible.

Crowd and walker heading selection. On a given trial, we
randomly selected 12 headings from a continuous Gaussian distri-
bution centered at one of 43 headings (ranging from �63°
[strongly leftward] to 63° [strongly rightward] in 3° increments,
Figure 1). The peak of the distribution determined the average
heading of the crowd and the width of the distribution determined
the heading variability within the crowd. The standard deviation of
the sampling distribution was always the same (4°). The resulting
amount of variability was noticeable; the average range (13.2°)
was much larger than the average just-noticeable difference
(5.78°). We used a truncated range of average crowd headings so
that values from the tails of a distribution centered at �63° or 63°
would not exceed �90° or 90°.

Because our stimulus set contained walkers with discrete head-
ings (e.g., �63°, �60°, �57°, etc.), we sorted each of the 12
outputs from the continuous Gaussian distribution into 3° bins
centered at the 60 possible walker headings between �90° and
90°. For example, a sampled heading of �58.6° would generate a
walker with a �60° heading, and a sampled heading of �58.4°
would generate a walker with a �57° heading.

Crowd and walker configurations. We presented walkers
randomly placed among 12 nonoverlapping locations in a 4 � 3
grid subtending 15.6° � 8.36° of visual angle (measured from the
center of each walker) with an average horizontal interwalker
distance of 2.34° and an average vertical interwalker distance of
0.612°. We used an orthographic projection (i.e., discounting lin-
ear perspective such that a given walker would appear identical at
any position in the grid).

Only randomly selected subsets of 2, 6, or 10 walkers were
visible from the full sampled crowd of 12 on a given trial. We also
included trials in which the most leftward and rightward headed

walkers were shown—the 2-extreme condition. We presented
these walkers in randomly selected locations in the grid (see Figure
1). We note that although the random assignment of walkers to
locations within the grid resulted in more empty space between
walkers in smaller subsets, pilot results with spatially contiguous
subsets confirmed that this spacing was not responsible for our
findings in Experiment 1 (i.e., we obtained identical results when
visible walkers were always adjacent).

Procedure. Observers initiated each trial by pressing the
space bar, followed immediately by a crowd of walkers presented
for 1,000 ms. Next, a black screen appeared for 1,000 ms followed
by a single dynamic response walker at the center of the screen.
The initial heading of the response walker was randomly chosen
on each trial from a range of �90° to 90°. Observers adjusted the
heading of the response walker to a value between �90° and 90°
in 3° increments to match the average heading of the crowd using
the right and left arrows on the keypad. The response walker
remained on the screen until the observer pressed the spacebar to
end the trial. This response-walker adjustment procedure smoothly
altered the heading without breaking the walker’s stride. An ad-
justment spanning the entire range of headings would have taken
at least 3,200 ms, although no response required such a large
adjustment. We note that although the time from the offset of the
group to the end of the adjustment procedure may have introduced
variability from a degraded memory trace into the recorded re-
sponse, this added variability should have affected each condition
equally. Furthermore, perceptual averaging has been shown to be
unaffected by delays much longer than those used in this experi-
ment (Chong & Treisman, 2005). We paired each subset size
(2-extreme, 2, 6, 10) with each mean heading (43 values) for a total
of 172 trials. Two observers ran in 860 trials to test the reliability
and significance of the results on an individual observer level. All
stimuli were presented on a 61-cm liquid crystal display monitor at
a viewing distance of 102 cm.

Results

For each trial, we calculated the difference between the esti-
mated heading of the visible subset and the actual heading of the
crowd of 12. We then measured response variability as the stan-
dard deviation of the distribution of these differences. Because the
walkers in each crowd varied in their individual headings, esti-
mates based on a single walker should not change (and should
remain poor) even when more of the 12 walkers from the full
crowd are visible in the subset. In contrast, estimates based on an
ensemble code should become more precise—that is, variability
should decrease—when more of the 12 walkers from the full
crowd are visible in the subset. We used a bootstrapping method
(Manly, 2007) for making planned comparisons between response
variability from the conditions.

Increasing the number of visible walkers clearly reduced re-
sponse variability (see solid line in Figure 1C). Planned compar-
isons confirmed that response variability with 10 walkers was
significantly less (i.e., better) than with two walkers (p � .05). A
control condition ruled out the possibility that observers cogni-
tively computed the average of a few select walkers; estimates
using the most leftward and rightward walkers from the full crowd
(the 2-extreme condition) were no better than those using two
randomly selected walkers, ns. We found the same pattern with the
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two observers who completed a longer version of the experiment,
both of whom showed significantly lower response variability for
a crowd of 10 as compared with a crowd of 2 (p � .05).

Experiment 1B: Precise Ensemble Coding of a
Crowd’s Heading With Very Brief Presentations

To conclusively rule out a serial search strategy, we replicated
Experiment 1A with extremely brief durations (200 ms). This brief
duration prevented observers from making saccades to multiple
walkers or using a serial search strategy to estimate the average
heading. To further characterize the precision of the ensemble
coding mechanism, we also compared sensitivity for a full heter-
ogeneous crowd of 12 to that of a single walker. If integrating
multiple walkers into an ensemble code averages out noise in the
encoding of each walker, then perception of a crowd may be more
precise than perception of an individual who is heading in the same
direction as the crowd.

Methods

Stimuli and procedure. Walkers were presented for 200 ms
and were backward masked by a random pattern of white dots
within a rectangle with an aspect ratio comparable to that of a
human configuration. We included trials showing only a single
walker (with a heading equivalent to the mean of the crowd) or the
full crowd of 12 intermixed with trials from each of the subset
sizes (2, 6, 10). We paired each condition with each mean heading
(43 values) once for a total of 215 trials.

We also tested perception of a single walker or a full crowd with
static, inverted, and scrambled walkers. These control conditions
allowed us to determine if any potential differences between
perception of a crowd and an individual were unique to perception
of upright–intact biological motion. Perception of biological mo-
tion may rely largely on the configuration of the human form
(Beintema & Lappe, 2002; McLeod, Dittrich, Driver, & Zihl,
1996; Vaina et al., 1990). We thus included trials where we
presented only a single randomly selected frame from each walk-
er’s gait cycle (static, with no motion—the human configurations
without motion condition). The stage of each walker’s gait within
a crowd was identical in this condition. Perception of biological
motion has also been suggested to rely heavily on local motion
cues (Chang & Troje, 2009; Mather, Radford, & West, 1992;
Thurman & Grossman, 2008; Troje & Westhoff, 2006). Inversion
is known to disrupt both low-level and global–configural infor-
mation in a walker (Beintema & Lappe, 2002; Gurnsey, Roddy, &
Troje, 2010; Troje & Westhoff, 2006). We thus included trials with
inverted walkers to determine if any potential differences between
perception of a crowd and an individual would occur with a
nonbiological stimulus with carefully matched low-level visual
information. We also included trials where we presented moving
clusters of dots without human configurations (scrambled walkers,
the motion without human configurations condition). To create
these scrambled walkers, we randomly positioned the location of
each dot in a 3D bounding box with an aspect ratio comparable to
that of a human configuration. We generated these scrambled dot
locations separately for each heading (�90° through 90°) for each
observer. It was crucial that the local motion of each dot in the
motion without human configurations condition was centered

about its randomly selected location (rather than a location on the
walker’s body) and was identical to the local motion with upright–
coherent walkers. This preserved the local motion but disrupted the
configuration of the dynamic information. Each of these control
conditions was run in a separate block of 86 trials. All other
experimental details were identical to those in Experiment 1A.

Because perception of biological motion most likely requires
integration of form and motion (Giese & Poggio, 2003), presum-
ably in high-level visual areas (Bonda, Petrides, Ostry, & Evans,
1996; Grossman et al., 2005; Grossman & Blake, 2001; Oram &
Perrett, 1994; Vaina et al., 1990), we predicted that response
variability would be greater in each of these control conditions.

Results

As with the longer presentations, response variability decreased
when more walkers from the full crowd were visible for only 200
ms (see dashed line in Figure 1C). Planned comparisons confirmed
that response variability with 10 walkers was significantly less
(i.e., better) than with two walkers (p � .05). Remarkably, heading
estimates of a heterogeneous crowd of 12 were even better than
estimates of a single walker with a heading identical to the mean
of the crowd (p � .05, see closed black circles in Figure 1D). This
heightened crowd sensitivity was unique for perception of upright–
coherent biological motion. We found the opposite pattern both for
perception of inverted walkers (p � .05; interaction against up-
right walkers, p � .05), and for static walkers (p � .05, interaction,
p � .05; Figure 1D). There was no difference between perception
of a single walker and a heterogeneous crowd with point-
scrambled walkers (p � .59), for which heading perception was
near chance-level (chance log standard deviation [SD] � 1.72,
confirmed using Monte Carlo methods).

Experiment 2: Ensemble Coding of Crowds With
Different Amounts of Variability

We further characterized the sensitivity of the ensemble code by
measuring response variability as a function of actual variability
within the crowd [similar to an equivalent noise analysis (e.g.,
Dakin et al., 2009; Ross & Burr, 2008)]. The motivation for this
approach is simple. Internal noise in the encoding of each walker
could cause a physically homogeneous crowd to appear heteroge-
neous. But by pooling signals from multiple walkers into a single
value that represents the entire crowd (i.e., an ensemble code), the
visual system may be able to average out variability and make a
crowd appear homogenous. In other words, if observers use an
ensemble code to perceive a crowd’s heading, then equivalent
increases in the heading variability within a crowd should only
cause increases in response variability after a threshold of internal
noise is surpassed. This nonlinear pattern should be well fit by a
crowd variability analysis, which would allow us to estimate the
number of walkers integrated into the ensemble (see Crowd Vari-
ability Analysis section below for more details). This kind of
approach allowed us to directly determine if ensemble coding
imposed perceptual unity onto a heterogeneous crowd. This design
is more direct and sensitive than an alternative approach in which
we could have asked observers how variable the crowd appeared.
The latter approach could be susceptible to individual differences
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or ambiguity in interpreting what variability means, whereas in our
design, observers simply indicated the crowd’s heading.

Methods

Crowd variability analysis. Random variability (i.e., noise)
in neural population activity can distort the appearance of individ-
ual features (Baldassi, Megna, & Burr, 2006; Suzuki & Cavanagh,
1998; Sweeny, Grabowecky, Kim, & Suzuki, 2011). Described in
signal-detection terminology, the appearance of a physically un-
changing feature (i.e., a constant signal) can vary from trial to trial
due to noise. To prevent this noise in individual-feature coding
from distorting the appearance of a group of features, the visual
system may optimize signal detection by setting an internal thresh-
old (i.e., a criterion) based on the expected level of internal
variability, and then disregarding variability in feature coding
(arising from signal or noise) below this threshold. To determine
encoding variability across a group of features, the visual system
must generate a summary statistical representation that describes
the entire group (i.e., an ensemble code). This thresholding mech-
anism may cause a slightly variable group of features to cohere
into a perceptually homogeneous ensemble, with each feature
assuming a value representative of the group [that is, involuntary
summary perception (Morgan et al., 2008; Murakami & Cavanagh,
1998; Ross & Burr, 2008; Watamaniuk & Sekuler, 1992; Watt &
Morgan, 1983)]. In other words, when actual feature differences
are small, each member of a crowd may take on the appearance of
the average of the group.

Compelling perceptual demonstrations with groups of low-level
visual features verify these perceptual predictions and confirm the
use of ensemble coding (Dakin, 2001; Dakin et al., 2009; Dakin et
al., 2005; Morgan et al., 2008; Ross & Burr, 2008; Watamaniuk &
Sekuler, 1992). For example, as long as orientation variability
among an array of tilted patches remains lower than the presumed
internal orientation–noise threshold, the patches appear identical
even with increases in their actual orientation variability; real
orientation differences are only perceived when larger than a
certain amount, presumably the internal noise threshold. To fit this
nonlinear increase in perceived variability, these demonstrations
used the following “equivalent noise” equation:

�obs
2 �

�loc
2 � �ext

2

N
glo

In an equivalent noise analysis, the observer’s response vari-
ability (�obs) is limited by the local noise in feature coding (�loc),
external noise in the crowd (�ext), and the number of features
integrated into the ensemble code (Nglo; Figure 2, see the refer-
ences directly above for more information).

Here, we used a modified version of the equivalent noise anal-
ysis to measure variability in heading estimates as a function of
actual variability in a crowd’s heading (we refer to our modified
version as a “crowd variability analysis”). Our only modification
was measuring response variability across trials rather than mea-
suring threshold for perceiving actual differences within the
crowd. Consider the following illustration of our analysis on
perception of a crowd’s heading instead of orientation. A hypo-
thetical observer with no local heading encoding noise (an unlikely
scenario) using only a single randomly selected walker to estimate

a crowd’s heading would show immediate increases in response
variability with equivalent increases in the crowd’s actual variabil-
ity (see Figure 2). This is because a single randomly selected
walker is a poor representative of a heterogeneous crowd. Adding
local noise to this observer’s heading-encoding would increase
response variability and introduce an expansive nonlinearity (i.e.,
a flattening of the function) for low levels of crowd variability.
This nonlinearity reflects the use of an internal noise threshold (see
above). In the most plausible scenario, an observer’s estimate
would be based on noisy encoding of multiple walkers, which
lowers the overall level of response variability (by incorporating
more heading information) while maintaining the nonlinearity. Of
importance, fitting response variability as a function of crowd
variability with this analysis allowed us to (1) demonstrate the use
of an ensemble code by confirming the use of multiple walkers to
make a heading estimate, (2) estimate the number of walkers
pooled into the ensemble code, and (3) determine if a heteroge-
neous crowd appeared cohesive.

In our experiments, an observer utilizing an ensemble code
should perceive the heading of a crowd with some variability as
precisely as they perceive the heading of a homogeneous crowd as
long as the variability in the crowd is less than their internal noise
threshold. That is, adding some noise to the crowd should not
impair the performance of an observer using multiple walkers, at
least up to a point. This pattern of results would provide separate
evidence of ensemble coding and complement our findings from
Experiment 1.

Stimuli and procedure. In this experiment, all 12 walkers in
a crowd were visible. Crowds had different amounts of heading
variability (i.e., walkers within a crowd had identical or increas-
ingly variable headings; see Figure 3A). The standard deviations of
the sampling distribution included 0° (resulting in a homogenous
group), 2°, 4°, 6°, 8°, 10°, and 12°. For visual simplicity and to
allow comparisons between discrete levels of heading variability,
we binned trials by requested standard deviation. Due to this

Figure 2. Illustration of response variability as a function of equivalent
increases in crowd variability using the crowd variability analysis and
hypothetical values of local noise and walkers incorporated into the en-
semble code. Increasing local noise in heading encoding introduces an
expansive nonlinearity by increasing response variability at low levels of
crowd variability. Using multiple walkers to estimate a crowd’s heading
lowers overall variability while retaining the nonlinearity.
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sampling and binning, the means of the sampled crowds of walkers
were close to, but did not exactly match the requested means.
However, there was little bias in the difference of the sampled
means from the requested means (e.g., mean [M] � �0.014, SD �
2.25, based on trials from a typical observer). Also because of the
sampling and binning, the standard deviations of the sampled
groups of walkers were close to, but did not exactly match the
requested standard deviations. The sampled standard deviations for
crowds with high variability tended to be slightly less than the
large requested standard deviations (e.g., sampled SD � 11.7° for
requested SD � 12°, based on one typical observer), probably as
a consequence of the limited range of headings. These trends
should not have affected our results in any systematic way since all
analyses of perceived heading error were made with respect to the
actual sampled means, and sampled standard deviation differences
were relatively small.

We collapsed across the range of crowd headings for all anal-
yses (although we did separately confirm that all effects were
consistent for leftward, oncoming, and rightward ranges of crowd
headings). On each trial, observers viewed a crowd presented for
1,000 ms and then indicated the mean heading of the crowd by
adjusting a subsequently presented dynamic response walker.

The main condition included walkers that had human configu-
rations combined with motion. This allowed us to obtain a baseline
level of perceptual sensitivity against which to compare the results
from our control conditions in which walkers were either static or
scrambled. The static condition allowed us to determine how much
perception of a full crowd of 12 walkers relied on human config-
urations alone. For this condition, we presented only a single

randomly selected frame from each walker’s gait cycle (the same
stimuli from the human configurations without motion condition
from Experiment 1B). The stage of each walker’s gait was
identical in this condition. This allowed us to determine if
specific stages of the gait cycle were more useful than others for
determining the average heading. The scrambled condition al-
lowed us to determine how much perception of a full crowd
relied on local dot motion alone. For this condition, we pre-
sented moving clusters of dots without human configurations
(the same stimuli from the motion without human configura-
tions condition from Experiment 1B).

For each condition, we paired each value of heading variability
(seven values) with each mean heading (43 values) five times for
a total of 1,505 trials run across five blocks. Each condition was
run in separate groups of five blocks. Observers completed the
upright–coherent condition first. Observers then completed blocks
with the static or scrambled walkers. We ran the conditions in this
order because we expected performance with static and scrambled
crowds to be worse than with upright–coherent crowds. Thus,
predicted poor performance in the static and scrambled conditions
would occur despite greater expertise with the task. We used the
same bootstrapping procedure from Experiment 1 for all planned
comparisons.

Results

Upright–coherent crowds. Heading estimates of crowds
with moderate variability were as precise as estimates of homo-
geneous crowds (Figure 3B); response variability was equivalent

Figure 3. Conditions and results from Experiment 2 (a) Sampling distributions with different SDs (0°–12°)
were used to generate crowds with increasing heading variability. Sampling distributions with SDs of 4° and 8°
(gray distributions), and 12° (black distribution) are shown below a crowd drawn from a distribution with an SD
of 12°. (b) Response variability as a function of crowd variability for perception of crowds of upright–coherent
walkers. (c) Response variability as a function of crowd variability for perception of walkers with human
configurations without motion (static crowds) or with motion without human configurations (scrambled crowds)
as compared with walkers with human configurations and motion (upright–coherent crowds). The solid black
lines represent the best fits of the crowd variability analysis for the average of all observers (a fit was not possible
for the motion without human configurations condition). Dashed gray lines in panel b represent the best fits for
individual observers. Error bars represent � 1 bootstrapped SD.
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for crowds with 4° and 0° of heading variability (for the group
average; p � .32, and each observer alone; p values � 0.23). This
is despite the fact that the range of headings in the 4° standard
deviation was over two times the just-noticeable-difference. This
robustness to variance suggests that individual walkers that would
be noticeably different on their own may cohere as a single Gestalt
when in a crowd. We fit the pattern of response variability with the
crowd variability analysis using the Matlab curve fitting toolbox
(MathWorks, Ltd). The crowd variability analysis provided an
excellent fit to the nonlinear pattern of response variability (for the
average of all four observers, R2 � 0.923). Because the number of
walkers integrated into the estimate was a free parameter of the
analysis (see Crowd Variability Analysis section, above), this fit
allowed us to estimate the number of walkers integrated into the
ensemble code. The best fit to the average performance of all
observers was consistent with at least four walkers having been
integrated into the ensemble code. The nonlinear pattern and the
excellent fit confirm our findings from Experiment 1 that observ-
ers used multiple walkers to determine the heading of the crowd.
Moreover, the number of walkers integrated (four) is consistent
with the suggestion that an effective sample size tends to be around
�n (Dakin et al., 2009).

Static crowds. Response variability was higher with static
form information as compared with dynamic form information
(p � .01; Figure 3C). We performed a separate analysis to deter-
mine if perception of a crowd’s heading was dependent on a
particular stage of the gait cycle (e.g., response variability could
have been lowest on trials where walkers had extended ankles;
Chang & Troje, 2009; Mather et al., 1992; Rosenholtz, 1999;
Thurman & Grossman, 2008; Troje & Westhoff, 2006). No clear
pattern emerged across observers, suggesting that any use of a
particular stage of the gait cycle, if at all, was idiosyncratic or
irrelevant. While performance with static information did follow a
nonlinear pattern, suggesting some use of an ensemble code and
perceptual homogenization, performance was significantly worse
overall (see above), and therefore cannot explain our main find-
ings. Overall, these results show that the ensemble code with
upright–coherent crowds could not have been based solely on the
presence of human configurations.

Scrambled crowds. Response variability was higher with
local motion alone as compared with when human configurations
and motion were combined, illustrated by a significant increase for
the average of all observers (p � .01) and even for the observer
(TS) who showed the smallest numerical increase in response
variability between these two conditions (p � .01; Figure 3B). The
ensemble code with upright–coherent crowds could not have been
based solely on the local motion of the dots.

Discussion

We showed that the visual system pools the movements of
individual people into an ensemble code in order to perceive the
average heading of a crowd. This summary statistical representa-
tion was formed with surprising speed and precision well beyond
what would be expected from some previous investigations of
crowd perception (Cavanagh et al., 2001; Neri et al., 1998; Thorn-
ton et al., 1998). Our results extend previous findings in which
coarse differences across multiple walking people were encoded
rapidly and incidentally (Thornton & Vuong, 2004). The ensemble

code relied on integration of human form and local motion, sug-
gesting that the summary representation was generated in high-
level visual areas. This is consistent with previous findings that the
visual system combines form and motion information to improve
sensitivity (e.g., Atkinson, Dittrich, Gemmell, & Young, 2004;
Bassili, 1979; Knight & Johnston, 1997; Lander, Christie, &
Bruce, 1999). In general, these results may reflect the prevalence
of collective animal behavior in nature, and they suggest that
perceiving the behavior of a crowd as a singular unit is an impor-
tant perceptual ability supported by specialized neural mecha-
nisms.

Our demonstration of superior perception of heterogeneous
crowds as compared with individuals is particularly novel and
surprising, and it suggests that the ensemble coding of biological
motion is uniquely strong and special. Although several investi-
gations of ensemble coding with low- and high-level visual fea-
tures have explicitly compared perception of heterogeneous
crowds versus individuals [for example, orientation and low-level
motion (Bulakowski, Bressler, & Whitney, 2007), and facial ex-
pressions (Haberman & Whitney, 2009)], ours is the first to
significantly and consistently demonstrate better perception of
crowds than of individuals. This could be because the encoding of
a person’s heading may be relatively noisy as compared with the
encoding of other features (especially with brief presentation) and
pooling multiple signals is most likely to sharpen perception when
encoding of an individual feature is noisy. Furthermore, this crowd
advantage is consistent with a recent demonstration showing that
extraction of summary statistics is best with large sets (Robitaille
& Harris, 2011). These findings are particularly interesting con-
sidering that the encoding of multiple features is traditionally
thought to impair perception (Franconeri, in press).

We used a crowd variability analysis to show that increases in a
crowd’s heading variability only affected the perceived heading
when the crowd was already noisy. This finding suggests that
ensemble coding may minimize the salience of subtle differences
to cause a chaotically moving crowd to cohere into a unified and
visually appealing Gestalt. This imposition of perceptual cohesion
on a crowd could have profound social consequences. For exam-
ple, in the group-member mind tradeoff, cohesion increases the
likelihood that people will attribute a collective mind and respon-
sibility to a group, and it decreases the likelihood that people will
attribute minds and accountability to individuals within the group
(Waytz & Young, 2012).

We speculate that a linear pooling mechanism (Parkes et al.,
2001) could account for the ensemble coding of biological motion
in the current investigation. This mechanism could produce better
performance with a heterogeneous crowd, as compared with an
individual when encoding of an individual is particularly noisy and
a sufficient number of samples from the crowd are included in the
ensemble code (as we found in Experiment 1B). Temporal inte-
gration of biological motion signals has been suggested in the
context of perceiving a single person’s movement, with infor-
mation accumulating across independent biological motion de-
tectors up to 2,800 ms (Neri et al., 1998). We speculate that a
similar linear pooling mechanism is operative with crowds of
people, with the exception that it pools information very
quickly (at least by 200 ms). Such a mechanism could mitigate
the effect of noise (Murakami & Cavanagh, 1998; Ross & Burr,
2008) on the perception of crowds, and may provide a compel-
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ling explanation of the curious human attraction to coordinated
movement (Gao, McCarthy, & Scholl, 2010). For example,
ensemble coding may impose perceptual coherence onto disor-
dered crowds of marching bands, dancers, and entertainers.

Our results build on previous investigations with static features
(Haberman et al., 2009; Haberman & Whitney, 2007, 2009) by
showing that ensemble coding can summarize very complex social
cues conveyed by movement of the human body. While further
research is necessary to reveal exactly where or how ensemble
coding occurs (e.g., are all visual features ensemble coded in a
single high-level area, or separately, in distinct stages of visual
processing?), summary statistical encoding with social features
suggests that possible loci should include, but are not limited to,
high-level visual areas. More generally, our results demonstrate
that humans are surprisingly well equipped to perceive emergent
social information that occurs beyond the level of the individual
(Helbing et al., 2000), and they suggest that this crowd perception
mechanism may have developed to offer perceptual resolution
beyond that which is possible when viewing individuals.
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