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Billions of bits of information arrive at the retina every 
moment, but our awareness is limited to a small frac-
tion of this information. There are many bottlenecks 
in visual processing, ranging from physiological and 
iconic bottlenecks (Nakayama, 1990), attentional bot-
tlenecks in space (Rensink, O’Regan, & Clark, 1997; 
Simons & Levin, 1997; Whitney & Levi, 2011) and in 
time (Battelli, Pascual-Leone, & Cavanagh, 2007;  
Franconeri, Alvarez, & Enns, 2007; Marois, Yi, & Chun, 
2004; Raymond, Shapiro, & Arnell, 1992), capacity 
limits in attention and memory (e.g., Franconeri, in 
press; Luck & Vogel, 1997; Scholl & Pylyshyn, 1999), 
and many others. One way in which the brain sur-
mounts some of these bottlenecks, which occur at mul-
tiple levels of visual processing, is by representing the 
statistical regularity of the world in the form of con-
densed ensemble representations. The leaves of a tree, 
the blades of grass, and the tiles of the floor are similar 
and redundant, giving rise to the percepts of “tree-
ness,” “lawnness,” and “floorness,” respectively. The 
individual components of each texture are lost in favor 
of a concise, summary statistical representation: an 
ensemble percept.

In this chapter we review summary statistical percep-
tion. Most of the work on this topic has focused on 
perception of average and variance in displays (e.g., the 
average length of blades of grass, the average size of a 
tree’s leaves, or the average expression in a crowd of 
faces). Several other chapters in this volume discuss in 
more detail texture perception (chapter 45 by Landy), 
crowding (chapter 48 by Levi), and scene and gist per-
ception (chapter 51 by Oliva). Although these are very 
clearly related, our focus is on the intersection between 
these topics, on the nature of ensemble representa-
tions, what can form an ensemble and at what levels of 
visual processing, and how ensembles might be repre-
sented in the brain.

The concept of summary representation has recently 
generated significant interest and debate within the 

vision science community (Alvarez, 2011; Alvarez & 
Oliva, 2008, 2009; Ariely, 2001, 2008; Chong &  
Treisman, 2003, 2005a, 2005b; de Fockert & Marchant, 
2008; Haberman & Whitney, 2007, 2009; Koenderink, 
van Doorn, & Pont, 2004; Myczek & Simons, 2008; 
Simons & Myczek, 2008). Also sometimes called ensem-
ble coding or ensemble perception, summary represen-
tation refers to the idea that the visual system naturally 
and directly represents an emergent quality (i.e., the 
gist) of a set of similar items (such as blades of grass). 
Such a system is intuitively appealing in terms of  
computational efficiency, and it has far-reaching impli-
cations for understanding awareness. For example, 
Chong and Treisman (2003) and, more recently, we 
(Haberman & Whitney, 2009) and other authors have 
suggested that summary representation can provide 
coarse information from sources across our entire field 
of view, driving the compelling impression that we have 
a complete and accurate grasp of our visual world 
(Haberman & Whitney, 2009). Thus, the “grand illu-
sion” (Noe, Pessoa, & Thompson, 2000) may not be an 
illusion at all but rather a noisy summary representation 
of all that we survey. Put another way, although many 
of the individual details of a scene are inaccessible, 
ensemble coding may provide a viable algorithm to 
keep the gist ever present.

Early Conceptualizations of Summary 
Statistical Perception

The concept of ensemble representation is not a new 
one. Aristotle described perception as a mean of  
sensory inputs, which could be used to identify stimulus 
changes as the sense organ gathered more information. 
Empirical examination of this phenomenon began cen-
turies later with investigations of Gestalt grouping 
(Wertheimer, 1923), although this early conceptualiza-
tion was not referred to as ensemble or summary statis-
tical perception, per se. The Gestaltists viewed emergent 
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object perception as a synergy of lower-level inputs; the 
final percept was more than the sum of its parts. 
Researchers argued that the grouped object was the 
favored percept and that the individual features were 
(at worst) lost or (at best) difficult to perceive (Koffka, 
1935). Although Gestaltists outlined several basic heu-
ristics by which the visual system groups features (simi-
larity, proximity, common fate, etc.), the underlying 
mechanism(s) driving this grouping, as well as the algo-
rithm that supports it, remained elusive. It may be that 
Gestalt grouping amounts to a summary statistical  
representation, and the mechanism of ensemble  
coding may provide an explanation for several Gestalt 
phenomena.

Although Gestalt phenomenology helped to define 
some elemental principles of object perception, 
researchers in this area were not explicitly thinking in 
terms of ensemble perception or summary statistical 
representation. Some of the earliest explicit work on 
ensemble coding was done from a social psychology 
perspective. In an extensive line of research Norman 
Anderson outlined a simple yet flexible model called 
“integration theory” (Anderson, 1971). His work dem-
onstrated that a weighted mean more precisely cap-
tured how information is integrated than a summation 
model. For example, subjects rated another individual 
more favorably when that person was described by two 
extremely positive terms compared to when that person 

was described by two extremely positive terms in  
addition to two moderately positive terms (Anderson, 
1965). Integration theory was extended to numerous 
other social contexts, including group attractiveness 
(Anderson, Lindner, & Lopes, 1973), shopping prefer-
ences (Levin, 1974), and even the perceived “badness” 
of criminals (Leon, Oden, & Anderson, 1973). Thus, it 
appears that humans readily integrate semantic as well 
as social information, although the mechanism behind 
this process remains largely unknown. The implication 
is clear, however: Social perceptions and attitudes may 
hinge on the same sort of underlying summary compu-
tations that allow us to perceive the gist of sets of visual 
features like the average direction of snow blowing in a 
blizzard.

The modern era of summary statistical research can 
be divided into two stages. Psychophysical work in the 
1980s and 1990s demonstrated that humans integrate 
low-level motion into something akin to an ensemble 
percept (Watamaniuk & Duchon, 1992; Watamaniuk, 
Sekuler, & Williams, 1989; Williams & Sekuler, 1984). 
These researchers proposed straightforward mecha-
nisms for perceiving the average; local information may 
be pooled across a population of low-level motion 
detectors operating in parallel (Watamaniuk & McKee, 
1998). Although these early accounts did not explicitly 
refer to ensembles or summary statistics, they laid the 
groundwork for a flood of modern work across an 

Figure 49.1 Summary statistical perception occurs across a wide range of stimuli. The flexibility of ensemble representation 
suggests that it occurs across multiple levels along the visual hierarchy.
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impressive range of low- to high-level visual features 
(figure 49.1).

The current era in the study of ensemble statistics 
began with the discovery that humans also derive a 
summary representation for the size of a set of arbitrary 
objects (Ariely, 2001; Chong & Treisman, 2003, 2005a, 
2005b) and that this summary representation is favored 
over a representation of the individual items composing 
the set. The striking aspects of this research are twofold. 
First, it suggested that we perceive ensembles implicitly, 
perhaps through parallel mechanisms. Second, it 
showed that summary statistical perception could occur 
for objects. This raises several interesting questions, 
including these: Are there low-level feature detectors 
designed to operate on object size in a manner akin to 
motion or orientation? If not, how does average size 
perception, if it is indeed parallel, bypass traditional 
limitations of serial attention? Does ensemble coding 
extend beyond low-level stimuli to complex objects 
important for social interactions (e.g., faces and moving 
bodies)?

Although open questions remain (some of which are 
addressed below), it is clear that ensemble coding is 
connected to several areas of vision science, and this, in 
part, explains the growing interest in summary statisti-
cal perception. In addition to providing a window on 
gist, ensemble perception has implications for the way 
we understand visual search, texture, depth, scene per-
ception, object recognition, spatial vision, attention, 
and awareness. The remainder of this chapter surveys 
the history of this subfield, highlights in greater detail 
some of the more influential work, and speculates as to 
where future work should be directed.

Multiple Levels of Summary Statistical 
Perception

We begin our survey by discussing which kinds of visual 
features are known to form ensemble percepts and at 
what levels of visual processing these summary repre-
sentations might be formed. The purpose of this 
approach is to highlight the incredible versatility of 
ensemble coding for perceiving various feature dimen-
sions and to reveal the possible stages of visual process-
ing in which ensemble codes are likely to be generated. 
Throughout our review we highlight evidence that 
ensemble percepts are formed implicitly and automati-
cally but are nonetheless susceptible to manipulations 
of attention. As with the study of almost any visual 
process, exploring the role of attention will help  
to reveal the underlying mechanisms of summary  
statistical perception and refine our understanding of 
awareness.

Perceiving Average Motion and Speed

As mentioned above, low-level motion was one of the 
first visual features shown to produce an ensemble or 
gist percept. Humans precisely perceive the average 
direction of a group of dots moving along unique  
local vectors (Watamaniuk, Sekuler, & Williams, 1989; 
Williams & Sekuler, 1984). Similar results are found for 
a group of dots that vary in speed (Watamaniuk & 
Duchon, 1992). Rather than perceiving each moving 
dot individually, the dominant percept is the average 
direction or speed of motion. Although interesting on 
their own, these demonstrations also provide descrip-
tions of pooling mechanisms that might underlie 
summary statistical perception with other features. For 
example, perceiving the average direction of motion 
from a set of moving dots (or blowing snow) is consis-
tent with established physiological mechanisms of 
motion perception (Britten & Heuer, 1999; Britten  
et al., 1992; Newsome & Pare, 1988); information may 
be pooled across low-level motion detectors operating 
in parallel, potentially obviating the involvement of 
serial attention (Watamaniuk & McKee, 1998; but see 
also Bulakowski, Bressler, & Whitney, 2007). These early 
accounts were not referred to as ensemble perception 
per se, but they clearly provide some of the first evi-
dence of summary statistical perception.

Perceiving Average Position

Several psychophysical experiments have shown that 
humans are sensitive to average or centroid position 
(Hess & Holliday, 1992; Morgan & Glennerster, 1991; 
Whitaker et al., 1996). Recent work shows that this sen-
sitivity is based on a real statistical decision, much like 
a t-test.  Fouriezos, Rubenfeld, and Capstick (2008) 
found that in an attempt to judge which of two crowds 
of vertically oriented bars had the greater average 
height (which could rely in part on a judgment of the 
average position of the top of the bars), performance 
was improved when groups with more bars were visible, 
but it was impaired when these groups had higher vari-
ability.

Perceiving average position can occur when aware-
ness is compromised, such as in crowding. Greenwood, 
Bex, and Dakin (2009) asked observers to indicate 
whether a horizontal bar intersected above or below the 
midpoint of a peripherally located vertical bar. Similar 
flankers with above- or below-the-midpoint intersec-
tions accompanied the target. Position information in 
the flankers influenced where observers perceived the 
intersection in the target; observers based their deci-
sions on the pooled position information across the 
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flankers and target—position averaging. Complementary 
work by Alvarez and Oliva (2008) further suggests that 
selective attention may play a minimal role in ensemble 
position perception. Using a multiple object-tracking 
task (Intriligator & Cavanagh, 2001; Pylyshyn & Storm, 
1988), Alvarez and Oliva (2008) found that even when 
observers were unable to localize individual unattended 
objects, they could localize the centroid of those objects, 
and their performance was perfectly predicted by aver-
aging the noisy representations of the individual objects. 
Although Chong and Treisman (2005b; discussed 
below) demonstrated that distributed attention could 
improve an estimate of the mean, this work (Alvarez & 
Oliva, 2008) suggested that ensemble position might be 
derived even beyond the focus of attention.

Perceiving Average Orientation

Humans readily perceive average orientation. Dakin 
(2001) was one of the first to demonstrate this when he 
showed that humans pool the orientations of multiple 
Gabor patches to estimate the mean orientation of a 
texture composed of heterogeneous orientations. This 
pooling occurs over large areas of space, and the 
number of samples used to estimate the average is 
approximately the square root of the size of the set. This 
suggests that, unlike tracking multiple objects (Franco-
neri, in press), perceiving ensembles may not be limited 
by a fixed number of features. In fact, ensemble orien-
tation perception becomes more precise when more 
items are in a set; Robitaille and Harris (2011) showed 
higher precision and reduced response times when 
larger sets were available to make mean orientation and 
size judgments. The efficiency of this pooling, however, 
can be compromised when attention is overloaded; 
Dakin and colleagues (2009) showed that an attention-
ally demanding task reduced the effective number of 
local orientations observers used to estimate the mean.

There is both psychophysical and physiological evi-
dence suggesting that representing average orientation 
is a parallel process. Some of the strongest evidence for 
this comes from Parkes and colleagues (2001), who 
showed that the orientation of a Gabor patch crowded 
out of awareness (i.e., observers were unable to dis-
criminate its orientation) nonetheless influenced the 
perceived average orientation of an entire set of sur-
rounding patches. Even though observers could not 
consciously individuate or scrutinize the target Gabor 
patch, orientation detectors could process the set in 
parallel and subsequently pool the information into a 
summary percept. A similar conclusion was reached by 
Alvarez and Oliva (2009). These results with crowding 
suggest that an orientation averaging system is not 

directly dependent on mechanisms of selective atten-
tion. This is consistent with the notion that average 
orientation representation reflects an automatic, low-
level physiological mechanism (Bosking, Crowley, & 
Fitzpatrick, 2002; Victor et al., 1994; Vogels, 1990). 
Several accounts have advocated a back-pocket model 
of visual texture (see chapter 45 by Landy), in which a 
second-stage mechanism pools the outputs of local 
filters, as a plausible mechanism for ensemble orienta-
tion perception.

Although it is clear that crowding is not necessary for 
the extraction of ensemble information, one intriguing 
possibility is that it enhances the precision of the 
summary representation. Similar to distributed atten-
tion that improved average size representation (Chong 
& Treisman, 2005a), crowding (Levi, 2008; Pelli, Palo-
mares, & Majaj, 2004; Whitney & Levi, 2011) by defini-
tion disrupts any serial attentive process (Intriligator & 
Cavanagh, 2001), which may force observers into an 
attentional strategy more conducive to summary repre-
sentation. Thus, crowding might facilitate the conden-
sation of (even consciously inaccessible) information 
into efficient “chunks.”

Perhaps even more intriguing is the notion that 
people may actually perceive the mean orientation. For 
example, Morgan, Chubb, and Solomon (2008) as  
well as Ross and Burr (2008) showed that orientation 
pooling allows people to gauge the variance in a texture 
of orientations, and as long as the overall variability 
across the set is below a certain threshold, each local 
element takes on the appearance of the mean orienta-
tion of the group (Parkes et al., 2001). In other words, 
we actually perceive the mean even when it is physically 
absent from the set.

Perceiving Average Size

The current era in the study of ensemble statistics 
began when Ariely (2001) provided evidence that 
observers could implicitly derive the average of a set of 
differently sized dots. In fact, this summary representa-
tion was the favored representation. Observers viewed 
sets of dots for 2 s and then indicated whether a subse-
quently viewed test dot was a member of the set. The 
striking aspect of these data was not just that observers 
performed poorly at the member identification task. As 
the size of the test dot approached the average size of 
the array of dots, observers were much more likely to 
respond that the test dot was a member of the set. Even 
though observers were instructed to attend to the indi-
vidual members, they instead represented the summary 
of the set constituents. When explicitly asked, observers 
were nearly as precise in discriminating the mean size 
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of several dots as they were in discriminating the size of 
a single dot. As with orientation (Dakin, 2001), mean 
discrimination performance seemed invariant to the 
number of dots in the set (up to 16), possibly suggesting 
that serial attention mechanisms were not required.

The impact of this seminal work is probably respon-
sible for the fact that several, if not the majority of, 
investigations of ensemble perception have regarded 
the perception of size. Accordingly, this subsection of 
our review is more extensive than the others. This is not 
to say that summarizing information about size is more 
important than summarizing other features (e.g., ori-
entation or faces). It merely reflects the abundance of 
relevant work.

Seeing average size is not just a physical calculation. 
Im and Chong (2009) harnessed the Ebbinghaus illu-
sion to create sets of circles that differed in their per-
ceived size and physical size. The ensemble percept 
followed the perceived size, which is probably encoded 
in V1 at the earliest (Arnold, Birt, & Wallis, 2008; 
Murray, Boyaci, & Kersten, 2006). Choo and Franconeri 
(2010) provided further evidence that ensemble size is 
computed in early stages of visual processing. When 
they used masking to truncate the representation of the 
size of a subset of circles to lower-level stages of process-
ing, these circles continued to influence the perception 
of the mean size.

As with average orientation perception, perception 
of average size follows statistical rules. de Gardelle and 
Summerfield (2011) found that observers discounted 
extreme values (i.e., outliers) when computing the 
mean shape of a set of circles and squares, suggesting 
that variance may be encoded in addition to the average 
(similar outlier exclusion has been found with faces 
[Haberman & Whitney, 2010]). Solomon, Morgan, and 
Chubb (2011) provide complementary findings in 
which observers were able to perceive the variance of a 
set of circles (or oriented Gabors [Solomon, 2010]) 
more efficiently than they could perceive the mean size 
(or orientation). The notion that we are all statisticians 
appears to be more than an anecdote.

Most investigations of summary statistical perception 
involve estimating the mean of a static array of features, 
but the world is dynamic, and recent research shows 
that the visual system accounts for this by pooling infor-
mation across time. Albrecht and Scholl (2010) showed 
that a pooling mechanism takes multiple samples across 
time to precisely represent the average size of a con-
tinuously changing circle.

Average size perception is also robust and appears to 
occur automatically and without intention. Chong and 
Treisman (2003) showed that perceiving which of two 
sets of 12 circles had a larger mean size was immune to 

changes in presentation (simultaneously versus succes-
sively) and duration (even with 50-ms presentations, 
although see Whiting & Oriet, 2011, for evidence that 
200 ms is a more appropriate lower limit). Moreover, 
observers’ discrimination of the average size of the set 
was nearly as precise as their discrimination of the size 
of a single circle. The precision of mean representation 
(at least for size) is best when attention is spread over 
a large spatial extent (Chong & Treisman, 2005a). Nev-
ertheless, Demeyere and colleagues found that a patient 
with simultanagnosia (Balint syndrome) could perceive 
ensemble size (and color) in an array of stimuli despite 
severely limited spatial attention (Demeyere et al., 
2008).

Average size is even computed across multiple sets, 
in parallel, preceding or perhaps bypassing limitations 
imposed by the attentional bottleneck. Chong and  
Treisman (2005b) found that when observers discrimi-
nated the average size of a subset of an array of circles 
that was segregated from the rest of the array by color, 
average size perception did not depend on whether the 
color cue preceded or followed the array of circles and 
was no worse even when only a single color was pre-
sented. Ensemble size perception is even possible when 
attention is divided across stimulus modalities. Albre-
cht, Scholl, and Chun (2011) asked observers to listen 
to a sequence of tones while simultaneously viewing a 
sequence of differently sized disks. Depending on a cue, 
they made a subsequent judgment about the mean of 
one set or the other. Ensemble tone or size judgments 
were unaffected by whether or not the cue preceded or 
followed the sequences. In other words, dividing atten-
tion across the two modalities had no cost on the effi-
ciency of perceiving the means. There is, however, a 
cost in ensemble precision when attention is divided 
between two feature dimensions (e.g., size and speed) 
(Emmanouil & Treisman, 2008).

Attentional manipulations may not only affect the 
precision or efficiency of the ensemble code but, under 
certain conditions, can also bias the representation in 
predictable ways. For example, priming observers to a 
dot of a particular size (either the largest or the smallest 
dot) biased estimates of mean size in the direction of 
the prime (de Fockert & Marchant, 2008). One inter-
pretation is that observers allocated more resources to 
the primed dot, resulting in a biased estimate of mean 
size or a representation that reflected only a spatially 
proximal subset of the dots. A complementary result 
found by Brady and Alvarez (2011) is that the mean size 
estimate reflects ready access to one of several hierar-
chical means within the set. Observers were biased by 
the mean size of a set even though they were asked to 
attend to an individual member. Interestingly, this bias 
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emerged only when attention was directed to a particu-
lar feature dimension (i.e., whether the member came 
from a red or a blue set, which were simultaneously 
presented). These studies suggest that observers repre-
sent multiple means simultaneously, but that those rep-
resentations are predictably biased by attention.

Although the role of attention in average size repre-
sentation is an ongoing debate (Ariely, 2008; Chong et 
al., 2008; Myczek & Simons, 2008; Simons & Myczek, 
2008), these studies provide support for the existence 
of an automatic mechanism responsible for average size 
computation.

Perceiving Ensembles of Faces

For many years, the focus of research on summary sta-
tistical perception has been on low-level stimuli (motion, 
orientation, position, size, etc.). However, given our 
effortless interaction with highly complex scenes and 
our subjective impression of a rich and complete visual 
world, it is reasonable to think that the ensemble coding 
heuristic might operate on a processing level beyond 
that of orientation, size, or texture. Haberman and 
Whitney (2007, 2009) and Haberman, Harp, and 
Whitney (2009) explored the possibility that observers 
could extract an average representation from high-level 
stimuli, including faces. The authors created a series of 
morphs, varying the expression of faces ranging from 
extremely happy to extremely sad. Observers viewed 
sets of these emotionally varying faces and were asked 
whether a subsequent test face was happier or sadder 
than the mean expression of the previous set. Remark-
ably, observers could discriminate the average expres-
sion of the whole set as well as they could discriminate 
the expression of a single face. This phenomenon 
proved to be robust and flexible, operating implicitly 
and explicitly (Haberman & Whitney, 2009), across a 
variety of expressions as well as gender morphs  
(Haberman & Whitney, 2007), at short exposure dura-
tions (as low as 50 ms, although with reduced precision 
(Haberman & Whitney, 2009), and on sets containing 
as many as 20 faces (Haberman, Harp, & Whitney, 2009; 
see figure 49.2). Control experiments demonstrated 
that the mean discrimination of expression declined 
when subjects viewed sets of inverted or scrambled 
faces, suggesting that the visual system extracts summary 
statistical information about the configural or holistic 
properties of faces, not just about low-level visual cues 
such as spatial frequency (Oliva & Torralba, 2001;  
Torralba & Oliva, 2003) or orientation.

Perceived facial expression also rapidly integrates 
over time (Haberman, Harp, & Whitney, 2009). Observ-
ers viewed sequences of different faces presented at 

various temporal frequencies and made judgments 
about the mean expression of those sequences. Observ-
ers were able to accurately derive a mean expression in 
a sequence of 20 faces presented at 20 Hz. The ensem-
ble required 800 ms of temporal integration. Although 
this integration time is higher than that for low-level 
motion (Burr, 1981; Nakayama, 1985; Snowden & Brad-
dick, 1989), it compares favorably with the time it takes 
the visual system to perceive biological motion (Neri, 
Morrone, & Burr, 1998) and suggests the work of a 
parallel mechanism.

Although the results from many of these investiga-
tions of summary perception and countless accounts of 
crowding suggest that access to information about indi-
viduals (e.g., the size of a particular circle or the expres-
sion of a particular face) is lost when the summary 
statistic is calculated (e.g., Rosenholtz, 2011), there is 
also good reason to suspect that holistic object-level 
representations remain intact but are somehow blocked 
from conscious access in favor of the ensemble. Fischer 
and Whitney (2011) demonstrated a result that built on 
that from Parkes and colleagues (2001) in which the 
expression of a face crowded out of awareness influ-
enced the average expression perceived in a crowd. 
Crucially, this pooling did not occur when the crowded 
face was inverted; the ensemble only incorporated 
holistic information from the face, indicating that a 
high-level object representation was intact and influenc-
ing the average but was not accessible to awareness.

High-level ensemble coding is further supported by 
other work showing that observers can rapidly perceive 
the mean identity of sets of faces (de Fockert & Wolfen-
stein, 2009; Yamanashi-Leib et al., 2012) as well as 
research showing rapid within-hemifield emotional 
averaging predicted by properties of neural averaging 
(Sweeny et al., 2009).

Perceiving Ensembles of Biological Motion

If ensemble perception occurs for high-level forms such 
as faces, then it is reasonable to believe that it might 
also occur for perception of biological motion, a high-
level visual feature defined by the integration of form 
and motion. Sweeny, Haroz, and Whitney (2012a) used 
a design reminiscent of that used by Dakin (2001) to 
examine this possibility. Observers estimated the head-
ings of briefly presented crowds of point-light walkers 
that differed in the number and headings of their 
members (i.e., people in differently sized crowds had 
identical or increasingly variable directions of walking). 
They found that observers rapidly pooled information 
from multiple walkers to precisely estimate the overall 
direction of the crowd. The striking aspect of these 
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results is that pooling across noisy individual walker 
directions allowed observers to perceive the direction 
of a crowd better than the direction of an individual. 
This precise ensemble percept required upright orien-
tations and human configurations, suggesting that the 

code was formed in high-level visual areas where form 
and motion are integrated. Moreover, it occurred within 
a surprisingly brief amount of time (200 ms), showing 
that ensemble percepts of even the most complex visual 
stimuli can be formed in parallel.

Figure 49.2 Several ensemble perception paradigms. Observers view sets of stimuli (e.g., faces). (A) In one experiment 
observers had to identify whether a test face was a member of the previously displayed set (membership ID). Observers were 
most likely to indicate a test face was a set member when it approached the mean expression of the set (0 indicates the  
mean expression). Thus, observers were unable to represent the individual set constituents but instead favored the ensemble. 
(B) Observers were explicitly asked about the average expression in a set (discrimination task). Surprisingly, they could dis-
criminate the mean expression as well as they could discriminate any single face. (C) Observers used the mouse to adjust the 
test face to match the mean expression of the set. This provided the full error distribution of the mean representation (0 indi-
cates the mean expression). Responses tended to cluster around the mean expression of the set. (Adapted from Haberman & 
Whitney, 2011b.)
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Multiple Levels and Multiple Pathways of Ensemble 
Coding

This brief survey is necessarily incomplete, but it pro-
vides a glimpse at the history of ensemble perception. 
The robust summary of statistical representations found 
across domains suggests that ensembles are calculated 
at multiple levels in both the dorsal and ventral streams. 
Some ensembles, such as average brightness, color, and 
orientation, may be generated at the earliest cortical 
(and possibly even subcortical) stages. Others, such as 
motion and position, may be generated along the dorsal 
stream. High-level shape and face ensembles are likely 
generated along the ventral, object-processing stream. 
Finally, biological motion ensembles are likely gener-
ated after the convergence of the dorsal and ventral 
pathways. Because ensemble percepts can emerge at 
independent levels of analysis, for example on holistic 
representations of faces independent of the ensemble 
brightness, orientation, or facial features in a scene, no 
single visual or cortical area is likely to be responsible 
for ensemble perception. Consequently, although there 
are several physiologically inspired models that might 
generate ensemble representations at single levels of 
visual processing (Balas, Nakano, & Rosenholtz, 2009; 
Freeman & Simoncelli, 2011; Rosenholtz et al., 2012), 
they are not prepared to capture the repetitive and 
independent nature of ensemble representations at 
multiple stages along the visual hierarchy. This holds 
especially true for high-level objects such as crowds of 
walking humans or faces.

Despite the distinct object properties processed at 
each level, the uniting commonality is that any set may 
be represented by a single ensemble percept. This 
percept is created and maintained for conscious access, 
while the individual constituents are lost (via limitations 
of visual working memory, crowding, etc.). Because the 
visual system creates a representation of many of the 
items within a set, (conscious) loss of the individual is 
inconsequential. Many unanswered questions remain, 
such as how many concurrent ensemble percepts can 
be maintained, whether there is interference between 
different levels of ensemble analysis (e.g., average facial 
expression, brightness, and orientation), and whether 
the ensembles bypass the limited capacity of attention 
and visual short-term memory or instead simply act as 
“chunks” of information, increasing processing effi-
ciency while still drawing on the finite resources of 
attention and memory.

It is easy to imagine how summary statistics explain 
texture appearance—the graniteness, stucconess, and 
so on of surfaces. Although textures have been exten-
sively studied (Beck, 1983; Landy & Graham, 2004; 

Malik & Rosenholtz, 1997; Nothdurft, 1991), and 
summary statistical representation of low-level features 
holds for typical textures, the finding that groups of 
faces or walking people are perceived as an ensemble—
as a texture—suggests that textures can occur at mul-
tiple, distinct levels of the visual processing hierarchy.

Is Ensemble Perception Just a Prototype?

The demonstration of summary statistical representa-
tion for faces may raise the concern that the results are 
simply due to a prototype effect (Solso & McCarthy, 
1981). Indeed, there has been significant research pro-
viding evidence that observers implicitly develop statis-
tical sensitivities to arbitrary patterns over time (Fiser & 
Aslin, 2001; Posner & Keele, 1968). However, unlike the 
prototype effect, ensemble coding requires no learning; 
summary statistical representation is a perceptual 
process, and observers are sensitive to it after only a 
single trial. Prototypes suggest that observers falsely rec-
ognize an average face due to predominant exposure 
to specific facial features over an extended period 
(Solso & McCarthy, 1981). The average face (or size, 
orientation, etc.) in ensemble coding, though, changes 
on a trial-by-trial basis and is immediately recognizable. 
Ensemble perception is therefore a much more flexible 
pooling of important information into computationally 
palatable chunks. Observers never actually see the 
average face of a set, and yet they favor the ensemble 
percept over the individuals.

Ensembles as an Explicit Code

Given the explosion of work convincingly showing that 
the visual system is sensitive to summary statistics, and 
the ease with which they are represented, there has 
been surprisingly little work exploring the supporting 
mechanisms. Although there have been a few studies 
that have addressed this directly, as described below, 
there are many fundamental questions left unanswered. 
For example, how are ensembles computed in the 
brain? Are there multiple levels of representation cor-
responding to the level at which each exemplar is ana-
lyzed (e.g., is average orientation computed in early 
visual cortex, and average emotion computed in face 
selective regions)?

Recent work exploring how ensembles are repre-
sented demonstrated an aftereffect specific to the 
average size. Aftereffects occur as a result of neural 
adaptation and reveal that a given feature is directly 
represented in the brain (e.g., Suzuki, 2005). In other 
words the existence of an aftereffect demonstrates ded-
icated neural coding for a given feature dimension. In 

8857_049.indd   702 4/18/2013   5:36:22 PM



PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY

K2

Werner—The New Visual Neurosciences

PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY

From Textures to Crowds  703

their study Corbett and colleagues (2012) had observ-
ers adapt to sets of dots varying in size and then judge 
which of two test circles was larger. The test dots were 
perceived as smaller after adaptation to a set with a 
large mean size, and vice versa, suggesting that average 
size is an explicitly represented feature dimension. 
However, one concern with the study is that the authors 
did not distinguish between local adaptation to the indi-
vidual elements (which must occur) and adaptation to 
the average. To clearly establish that these aftereffects 
indeed reflected adaptation to the mean size, the results 
must demonstrate adaptation independent of what is 
predicted by local adaptation effects. Nevertheless, this 
finding makes a clear prediction for future research; it 

should be possible to identify and characterize an 
ensemble representation in the brain.

So while evidence is accumulating to support the 
notion that summary statistics are directly represented 
in the brain, the algorithm for computing this summary 
value is not entirely clear. A linear pooling mechanism 
is probably the most plausible and popular candidate 
(see figure 49.3). This type of mechanism is fairly 
straightforward (representations of individual features 
are integrated, and the average is determined), and 
modeling illustrates that it can provide a reasonable 
approximation for perception of average orientation 
(Parkes et al., 2001) and average biological motion 
(Sweeny, Haroz, & Whitney, 2012b). These pooling 

Figure 49.3 One possible physiological mechanism driving pop-out. (A, B) Orientation-selective cells (possibly in V1) fire in 
response to visual input. (C, D) The activity from some or all of the orientation-selective cells is combined to create the ensem-
ble. (E) Via feedback or horizontal connections, the activity from orientation-selective cells is normalized to the population 
response (i.e., ensemble). Any cell activity remaining will correspond to the deviant. One of the strengths of this model is that 
it can operate in parallel, negating the computationally inefficient method of comparing each item with every other one. 
(Adapted from Haberman & Whitney, 2011b.)
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models include Gaussian-shaped early-stage channel 
noise in the encoding of each individual feature and a 
subsequent stage in which the outputs of these channels 
are combined, averaged, and perturbed by late-stage 
Gaussian-shaped noise. For example, the outputs of 
several orientation-tuned channels could be integrated 
into a population code. The centroid of this population 
of noisy individual feature representations would deter-
mine the average orientation. Population coding such 
as this is common (Suzuki, 2005), and it is reasonable 
to assume that it could apply to perception of  
ensembles.

Pooling, especially across large subsets of features, 
affords the prospect of averaging out noisy estimates of 
local features (Dakin, 2001; Ross & Burr, 2008; Morgan, 
Chubb, & Solomon, 2008). Moreover, linear pooling 
predicts that when encoding is particularly noisy, the 
average should be as precise as (or even more precise 
than) perception of an individual. Such precision has 
been borne out in several investigations (Alvarez & 
Oliva, 2008; Ariely, 2001; Bulakowski, Bressler, & 
Whitney, 2007; Haberman & Whitney, 2009; Sweeny, 
Haroz, & Whitney, 2012a). For example, a recent study 
by Yamanashi-Leib et al. (2012) found that prosopag-
nosics, who have difficulty recognizing individual faces 
(i.e., have noisy face recognition), nevertheless recog-
nize crowds surprisingly well.

Choo and Franconeri (2010) provide a compelling 
explanation of how pooling might be implemented in 
the brain. They note that the mandatory pooling that 
occurs when objects are nearby in space (i.e., in what 
are referred to as integration fields by Pelli, Palomares, 
& Majaj, 2004, or areas of minimal attentional resolu-
tion by Intriligator & Cavanagh, 2001) is consistent with 
the length of horizontal connections in V1 and the size 
of receptive fields in V4. They suggest that averaging is 
a result of integration through these connections in 
lower-level areas and pooling within receptive fields in 
high-level areas. This hypothesis is consistent with the 
fact that ensemble perception is better when attention 
is diffusely spread (Chong & Treisman, 2005a). Further-
more, Sweeny and colleagues (2009) provide direct 
empirical support for this speculation. In their investi-
gation observers viewed a briefly and simultaneously 
presented pair of faces with different emotional expres-
sions and were postcued to rate the emotional expres-
sion of just one face in the pair. Critically, the locations 
of the faces were varied such that both faces either fell 
within large receptive fields of high-level neurons (both 
within a hemifield) or in separate receptive fields (each 
in a separate hemifield). Perceptual averaging occurred 
(the expression of a given face appeared more like the 
average of the pair), but only when the faces fell within 

what would be expected to be the same receptive fields 
of high-level face-tuned neurons.

Although these studies hint that ensembles may be a 
fundamental representation of the visual system, much 
work remains to be done to determine whether multi-
ple levels of representation exist and to characterize the 
algorithm more precisely. In our view these represent 
some of the most challenging and exciting avenues for 
future research in the field.

Implications of Ensemble Coding

Overall, it is clear that although ensemble percepts may 
not be completely independent of attention, they do 
occur implicitly. What are the broader implications of 
implicit statistical summarization of the environment? 
How does this knowledge inform traditional notions of 
awareness? We explore these questions in this section.

Bypassing the Bottleneck

The discovery that ensembles could be represented 
implicitly led several researchers to speculate that 
summary perception might drive the sense of visual 
completeness in spite of limited awareness (Cavanagh, 
2001; Chong & Treisman, 2003; Haberman & Whitney, 
2009). Even though the visual system can explicitly rep-
resent just a few items simultaneously (e.g., Luck & 
Vogel, 1997; Franconeri, in press), the world beyond 
the focus of attention does not fade to black. In fact, 
the objects and scenes we are not attending to seem 
remarkably rich. It is reasonable to speculate that this 
“grand illusion” may be due, in part, to summary statis-
tical perception. The statistics of natural scenes (e.g., 
Simoncelli & Olshausen, 2001) are, indeed, quite stable 
(Oliva, 2005; Torralba & Oliva, 2003), and the visual 
system efficiently exploits this natural redundancy by 
generating summary percepts. Several recent findings 
support this hypothesis by showing (1) how ensemble 
representations provide strikingly precise percepts in 
spite of noisy encoding of individual details and (2) that 
moment-to-moment awareness of visual scenes more 
closely follows ensemble representations than abrupt 
changes in individual features.

Sweeny, Haroz, and Whitney (2012a) demonstrated 
that pooling across multiple noisy features produces an 
ensemble percept that surpasses the precision with 
which we can perceive an individual. Observers viewed 
a crowd composed of individual people with different 
directions of walking. Because the crowd spanned a 
large spatial extent and was only visible for 200 ms, the 
encoding of each walker was noisy. Nevertheless, observ-
ers perceived the crowd’s average direction of walking 
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more precisely than they perceived a single foveally 
presented person’s direction. This shows that even 
though perception of a given feature in the periphery 
may be poor, perception of the group (or the whole 
scene) truly is precise.

Similar high-resolution pooling occurs outside the 
focus of attention. Alvarez and Oliva (2008) found that 
observers were just as good at reporting the average 
position of a set of dots they had been tracking as with 
dots they had not been tracking (i.e., beyond the focus 
of attention). Modeling showed that, although the posi-
tion representation of the individual dots beyond the 
focus of attention was noisy, as expected, the average of 
these noisy representations nonetheless accurately pre-
dicted performance on the average position task. This 
suggests that ensemble information was preserved  
in spite of limited awareness, and it supports the asser-
tion that ensembles provide an efficient means to  
maintain perceptual stability (i.e., deriving a precise 
ensemble code even though only noisy information was 
available).

Moment-to-moment awareness of a scene closely 
follows ensemble representations even when abrupt 
changes in individual features go unnoticed. Alvarez 
and Oliva (2009) showed that while engaged in an 
attentionally demanding tracking task, observers were 
explicitly aware of changes in the background that 
altered the average orientation of the top and bottom 
halves of the screen. However, observers were oblivious 
to changes of the same magnitude that preserved the 
overall ensemble (i.e., the average orientation). Thus, 
information regarding global scene statistics remains 
available even in the face of exhausted attentional 
resources.

Complementary evidence that ensembles provide 
low-cost perceptual stability comes from a dual-task 
paradigm employed by Haberman and Whitney 
(2011a). Observers viewed two sets of 16 successively 
presented faces on each trial. Within a given trial, 4 of 
the 16 faces changed from one emotional extreme to 
another (e.g., four happy faces turned sad). This shift 
created a change in the overall mean emotion of the 
set. Observers were instructed to identify (1) which of 
the two sets was on average happier (ensemble task) 
and (2) the location of just one of the four changes 
(change localization task). In trials in which change 
localization failed (i.e., when the observer could not 
report where on the screen the change occurred), 
observers were nonetheless significantly above chance 
in identifying which set was on average happier. 
Although change localization reflects the limitations of 
explicit awareness, ensemble codes seem to bypass 
these limitations. Taken together, these studies point to 

a robust and efficient heuristic at work, one that can 
maintain the stability of our visual world in the face of 
limited information.

Visual Search

The possible connection between ensemble coding and 
visual search is appealing. Despite the rich literature  
on the properties of visual search (Treisman, 1982;  
Verghese, 2001; Wolfe, Cave, & Franzel, 1989), a physi-
ologically plausible mechanism (e.g., an algorithm or 
neural implementation; Marr, 1982) that generates 
popout is still debated (Eckstein, 1998; Itti & Koch, 
2000; Wolfe, 2003). Summary statistical representa-
tions—ensemble coding—may serve as a computation-
ally efficient means of calculating deviance. Several 
models have made similar suggestions (e.g., Callaghan, 
1984; Duncan & Humphreys, 1989). Often these models 
suggest that similarity influences popout (Duncan & 
Humphreys, 1989). However, what counts as “similar” 
or “dissimilar” is unclear. Summary statistical represen-
tations, per se, could provide the underlying metric of 
similarity, one that affords deviance detection (Rosen-
holtz et al., 2012). Recent accounts of visual search also 
acknowledge the possibility that much of the periphery 
may be represented as an ensemble and processed pre-
attentively and that this nonselective ensemble pathway 
generates a gist impression that guides a selective 
pathway, leading to more efficient real-world search 
(Wolfe et al., 2011).

How might a very simple, physiologically plausible, 
population-coding algorithm extract ensemble infor-
mation and generate popout? Figure 49.3A shows an 
example of an array of oriented lines that might stimu-
late many local populations of orientation-selective cells 
(e.g., in V1). If a subset of locally tuned receptive fields 
is sampled (figure 49.3B), and its output is pooled 
(figure 49.3C), a global population tuning curve is rep-
resented [only a subset of the items needs to be 
sampled]; cf. Dakin & Watt, 1997; Morgan, Chubb, & 
Solomon, 2008; Myczek & Simons, 2008). This global 
population curve is the average of local tuning curves 
and ultimately produces an ensemble percept (figure 
49.3D). Note that the impact of any deviant orientation 
is mitigated in the global population curve, as most of 
the inputs are of similar orientations. The global popu-
lation response then normalizes the local tuning (via 
feedback or horizontal connections; figure 49.3E). 
Most of the local population responses are reduced to 
near 0, and what is left is activity corresponding to the 
deviant orientation. Although low-level normalization 
or contextually dependent procedures have been 
implemented in other models (e.g., Itti, Koch, & Niebur, 
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1998; Li, 1999), this model implicates ensemble coding 
and the generation of ensemble percepts as the basis 
for popout. A particular strength of this model is that 
the normalization operation may be carried out in par-
allel, without repetitive comparisons across local popu-
lation responses.

Conclusion

Despite many bottlenecks in visual processing and the 
limited nature of awareness, humans rapidly extract an 
enormous amount of information from scenes (Oliva & 
Torralba, 2001; Potter, 1976; Thorpe, Fize, & Marlot, 
1996; Torralba & Oliva, 2003). It is becoming clear that 
much of this information may take the form of con-
densed summary statistics—computationally efficient 
ensemble representations of similar features and objects 
in scenes. Ensembles are encoded from the lowest levels 
of feature processing to the highest levels of object and 
face perception. Ensemble perception occurs quickly, 
automatically, and outside the focus of attention, 
although it is also modulated by attention. More broadly, 
ensemble perception may underlie much of our impres-
sion of perceiving a complete and rich visual world.
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